Vibration energy harvesting under concurrent base and flow excitations with internal resonance

被引:45
|
作者
Liu, Haojie [1 ]
Gao, Xiumin [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Tech Univ, Sch Phys & Math Sci, Nanjing 210016, Jiangsu, Peoples R China
关键词
Internal resonance; Energy harvesting; The method of multiple scales; Analytic solutions; Concurrent excitations; ACTIVE FLUTTER SUPPRESSION; WIND-TUNNEL TESTS; DESIGN;
D O I
10.1007/s11071-019-04839-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this study, internal resonance is investigated to further explore the potential of energy harvesting under concurrent base and flow excitations. The effects of system parameters on the performance of energy harvester with three-to-one internal resonance are analyzed analytically. At first, a lumped-parameter model for the energy harvester, which consists of a two-degree-of-freedom airfoil with the piezoelectric coupling introduced to the plunging motion, is established by using a nonlinear quasi-steady aerodynamic model. Subsequently, the method of multiple scales is implemented to derive the approximate analytic solution of the energy harvesting system under three-to-one internal resonance. Then, the bifurcation characteristics of the energy harvester with respect to various system parameters are analyzed. Finally, the numerical solutions are presented to validate the accuracy of the approximate analytic solutions. The study shows that the harvested voltage and power of the energy harvester can be significantly improved in the presence of internal resonance. In addition, the analytic solutions of internal resonance and the bifurcation analysis can provide an essential reference for design of such a kind of energy harvester.
引用
收藏
页码:1067 / 1081
页数:15
相关论文
共 50 条
  • [31] A comprehensive study of 2:1 internal-resonance-based piezoelectric vibration energy harvesting
    Liuyang Xiong
    Lihua Tang
    Brian R. Mace
    Nonlinear Dynamics, 2018, 91 : 1817 - 1834
  • [32] Dual electromagnetic mechanisms with internal resonance for ultra-low frequency vibration energy harvesting
    Sun, Ruqi
    Zhou, Shengxi
    Li, Zhongjie
    Cheng, Li
    APPLIED ENERGY, 2024, 369
  • [33] Subharmonic resonance of a clamped-clamped buckled beam with 1:1 internal resonance under base harmonic excitations
    Li, Junda
    Huang, Jianliang
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2020, 41 (12) : 1881 - 1896
  • [34] Subharmonic resonance of a clamped-clamped buckled beam with 1:1 internal resonance under base harmonic excitations
    Junda Li
    Jianliang Huang
    Applied Mathematics and Mechanics, 2020, 41 : 1881 - 1896
  • [35] Subharmonic resonance of a clamped-clamped buckled beam with 1:1 internal resonance under base harmonic excitations
    Junda LI
    Jianliang HUANG
    AppliedMathematicsandMechanics(EnglishEdition), 2020, 41 (12) : 1881 - 1896
  • [36] Energy harvesting from unimorph piezoelectric circular plates under random acoustic and base acceleration excitations
    Bakhtiari-Shahri, Mohsen
    Moeenfard, Hamid
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 130 : 502 - 523
  • [37] Design of a New Piezoelectric Energy Harvesting Handrail With Vibration and Force Excitations
    Li, Zhenjing
    Xu, Qingsong
    Tam, Lap Mou
    IEEE ACCESS, 2019, 7 : 151449 - 151458
  • [38] Maximizing Direct Current Power Delivery from Bistable Vibration Energy Harvesting Beams Subjected to Realistic Base Excitations
    Dai, Quanqi
    Harne, Ryan L.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2017, 2017, 10164
  • [39] Enhanced Energy Harvesting of a Nonlinear Energy Sink by Internal Resonance
    Hou, Shuai
    Teng, Ying-Yuan
    Zhang, Ye-Wei
    Zang, Jian
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2019, 11 (10)
  • [40] Energy Harvesting Dynamic Vibration Absorber under Random Vibration
    Dipak, S.
    Rajarathinam, M.
    Ali, S. F.
    2013 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA), 2013, : 1241 - 1246