Development of the power load modeling system with denoising and parameter identification

被引:1
|
作者
Wang, Lidi [1 ]
Ge, Qingying [1 ]
Li, Zhe [2 ]
Nian, Taigang [2 ]
机构
[1] Shenyang Agr Univ, Dept Informat & Elect Engn, Shenyang 110866, Peoples R China
[2] Kangping Power Supply Co, Shenyang 110500, Peoples R China
来源
关键词
Load modeling; Power system; Dynamic load model; ZIP load model;
D O I
10.4028/www.scienqic.net/AMR.805-806.712
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The power load modeling system is designed with denoising and parameter identification. This system consists of signal acquisition, signal preprocessing, parameter identification, different load modeling methods such as ZIP model and Dynamic modeling. Original signal can be read from Excel file, which is the simulated signal or measurement signal. Then some kinds of denoising methods can be selected, which are mean filtering, medial filtering and wavelet denoising. After being denoised, the load signal is suitable for the parameter identification process. ZIP model is used to simulate the static load model, and the dynamic model is used to simulate the dynamic load model which is changeable during different periods. With the parameter identification and simulation process, measurement power load signal is used in the experiment, the dynamic model is more suitable for the variable load voltage feature's description.
引用
收藏
页码:712 / +
页数:2
相关论文
共 50 条
  • [31] Robust Time-Varying Parameter Identification for Composite Load Modeling
    Wang, Chong
    Wang, Zhaoyu
    Wang, Jianhui
    Zhao, Dongbo
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (01) : 967 - 979
  • [32] Research on Dynamic Modeling and Parameter Identification of the Grid-Connected PV Power Generation System
    Liu, Kezhen
    Mao, Yumin
    Chen, Xueou
    He, Jiedong
    Dong, Min
    ENERGIES, 2023, 16 (10)
  • [33] Dynamics Modeling and Parameter Identification of a Cooling Fan System
    Peng, Chao-Chung
    Lin, Yung-I
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON ADVANCED MANUFACTURING (IEEE ICAM), 2018, : 257 - 260
  • [34] Nonlinear modeling and parameter identification of an air rudder system
    Zhou G.-F.
    Liu B.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2023, 36 (05): : 1216 - 1222
  • [35] Power converter thermal modeling based on experimental parameter identification
    Malyna, D. V.
    Duarte, J. L.
    Hendrix, M. A. M.
    van Horck, F. B. M.
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-7, 2006, : 2620 - +
  • [36] The Pavement as a Waveguide: Modeling, System Identification, and Parameter Estimation
    Hostettler, Roland
    Nordenvaad, Magnus Lundberg
    Birk, Wolfgang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2014, 63 (08) : 2052 - 2063
  • [37] Power system load Modeling by learning based on system measurements
    Wen, JY
    Jiang, L
    Wu, QH
    Cheng, SJ
    IEEE TRANSACTIONS ON POWER DELIVERY, 2003, 18 (02) : 364 - 371
  • [38] Deep Learning-Based Time-Varying Parameter Identification for System-Wide Load Modeling
    Cui, Mingjian
    Khodayar, Mahdi
    Chen, Chen
    Wang, Xinan
    Zhang, Ying
    Khodayar, Mohammad E.
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (06) : 6102 - 6114
  • [39] Nonstationary Approaches to Trend Identification and Denoising of Measured Power System Oscillations
    Roman Messina, Arturo
    Vittal, Vijay
    Heydt, Gerald Thomas
    Browne, Timothy James
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2009, 24 (04) : 1798 - 1807
  • [40] Identification and Estimation of Power System Branch Parameter Error
    Castillo, M. R. M.
    London, J. B. A., Jr.
    Bretas, N. G.
    2009 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-8, 2009, : 3480 - +