Machine learning-based approach for identifying mental workload of pilots

被引:23
|
作者
Mohanavelu, K. [1 ,2 ]
Poonguzhali, S. [2 ]
Janani, A. [2 ]
Vinutha, S. [1 ]
机构
[1] MoD, DRDO, Def Bioengn & Electromed Lab DEBEL, New Delhi 560093, India
[2] Anna Univ, Ctr Med Elect, Chennai 600025, Tamil Nadu, India
关键词
Cognitive workload; ML; LDA; SVM; k-NN; Fighter pilots; Feature reduction technique; CLASSIFICATION; PERFORMANCE; EEG;
D O I
10.1016/j.bspc.2022.103623
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In general, the fighter pilots are required to engage themselves entirely during flight operations involved in airto-air combat while in the cockpit of a fighter aircraft. The performance has to be monitored continuously by classifying their cognitive workload levels during different phases of flying. Towards this direction, an experimental study was conducted in a realistic high-fidelity flight simulator environment to classify the Pilots' Cognitive Workload (PCWL) level. A real-time implementation of algorithms to effectively organize the PCWL during takeoff, cruise and landing phases, physiological signals such as ECG and EEG of fighter pilots are used. The classification algorithms such as Linear Discriminant Analysis (LDA) classifier, Support Vector Machine (SVM) classifier, k-Nearest Neighbour (k-NN) classifier have been employed. It has resulted that takeoff (LDA - 75%, kNN - 60% and SVM - 75%) and landing phase (LDA - 75%, kNN - 60% and SVM - 75%) was better classified by HRV features while using PCA and cruise phase was classified better using EEG features (LDA - 72.44%, kNN - 62.92% and SVM - 59.02%) when PCA feature reduction technique was adopted. Using significant features by feature selection methods (PCA, statistically significant features) have shown improved classification accuracy compared to all the features classification method. The LDA and SVM are consistent classifiers compare to the kNN classifier. This study helps to classify the PCWL level at each flying phase due to increased task.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Evaluating a Machine Learning-based Approach for Cache Configuration
    Ribeiro, Lucas
    Jacobi, Ricardo
    Junior, Francisco
    da Silva, Jones Yudi
    Silva, Ivan Saraiva
    2022 IEEE 13TH LATIN AMERICAN SYMPOSIUM ON CIRCUITS AND SYSTEMS (LASCAS), 2022, : 180 - 183
  • [32] Predicting mergers & acquisitions: A machine learning-based approach
    Zhao, Yuchen
    Bi, Xiaogang
    Ma, Qing-Ping
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2025, 99
  • [33] A Machine Learning-based Approach for The Prediction of Electricity Consumption
    Dinh Hoa Nguyen
    Anh Tung Nguyen
    2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 1301 - 1306
  • [34] A Machine Learning-Based Approach for Crop Price Prediction
    Gururaj, H. L.
    Janhavi, V.
    Lakshmi, H.
    Soundarya, B. C.
    Paramesha, K.
    Ramesh, B.
    Rajendra, A. B.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (03)
  • [35] A Machine Learning-Based Lexicon Approach for Sentiment Analysis
    Sahu, Tirath Prasad
    Khandekar, Sarang
    INTERNATIONAL JOURNAL OF TECHNOLOGY AND HUMAN INTERACTION, 2020, 16 (02) : 8 - 22
  • [36] Phishing Attacks Detection A Machine Learning-Based Approach
    Salahdine, Fatima
    El Mrabet, Zakaria
    Kaabouch, Naima
    2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2021, : 250 - 255
  • [37] Machine learning-based new approach to films review
    Mustafa Abdalrassual Jassim
    Dhafar Hamed Abd
    Mohamed Nazih Omri
    Social Network Analysis and Mining, 13
  • [38] Subtyping of hepatocellular adenoma: a machine learning-based approach
    Liu, Yongjun
    Liu, Yao-Zhong
    Sun, Lifu
    Zen, Yoh
    Inomoto, Chie
    Yeh, Matthew M.
    VIRCHOWS ARCHIV, 2022, 481 (01) : 49 - 61
  • [39] Machine Learning-Based Multilevel Intrusion Detection Approach
    Ling, Jiasheng
    Zhang, Lei
    Liu, Chenyang
    Xia, Guoxin
    Zhang, Zhenxiong
    ELECTRONICS, 2025, 14 (02):
  • [40] A machine learning-based approach for estimating available bandwidth
    Chen, Ling-Jyh
    Chou, Cheng-Fu
    Wang, Bo-Chun
    TENCON 2007 - 2007 IEEE REGION 10 CONFERENCE, VOLS 1-3, 2007, : 164 - +