ON THE PSEUDO - PROJECTIVE TENSOR OF NEARLY COSYMPLECTIC MANIFOLD

被引:0
|
作者
Mohammed, N. J. [1 ]
Abood, H. M. [2 ]
机构
[1] Minist Educ, Basra Educ Directorate, Basrah, Iraq
[2] Univ Basrah, Dept Math, Basrah, Iraq
来源
关键词
Nearly cosymplectic manifold; pseudo-projective tensor; Einstein space;
D O I
10.47013/15.3.7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors focused on the geometry of the pseudo projectively tensor of nearly cosymplectic manifold. In particular, it has established that the scalar curvature tensor of the aforementioned manifold is constant. Moreover, under the flatness property, the necessary condition for the nearly cosymplectic manifold to be an Einstein space, has been determined.
引用
收藏
页码:497 / 506
页数:10
相关论文
共 50 条
  • [41] PSEUDO-PROJECTIVE TENSOR FIELDS IN A SPECIAL KAWAGUCHI SPACE
    HIT, R
    TENSOR, 1974, 28 (01): : 1 - 4
  • [42] RECURRENT FINSLER-SPACES WITH PSEUDO PROJECTIVE TENSOR FIELD
    PANDE, HD
    SINGH, B
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1974, 57 (1-2): : 70 - 74
  • [43] ALMOST PSEUDO RICCI SYMMETRIC MANIFOLD ADMITTING SCHOUTEN TENSOR
    Ali, Mohabbat
    Vasiulla, Mohd
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2021, 19 (02) : 217 - 225
  • [44] Critical metric equation on α-cosymplectic manifold
    Baishya, Kanak Kanti
    Bakshi, Manoj Ray
    JOURNAL OF ANALYSIS, 2023, 31 (01): : 871 - 880
  • [45] Ricci soliton on (κ, μ)-almost cosymplectic manifold
    Rani, Savita
    Gupta, Ram Shankar
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2023, 30 (03) : 354 - 368
  • [46] PROJECTIVE CURVATURE TENSOR OF A SEMI-SYMMETRIC METRIC CONNECTION IN A KENMOTSU MANIFOLD
    Barman, Ajit
    De, U. C.
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2013, 6 (01): : 159 - 169
  • [47] ON GENERALIZED M-PROJECTIVE CURVATURE TENSOR OF PARA-SASAKIAN MANIFOLD
    Jain, Swati
    Raghuwanshi, Teerathram
    Pandey, Manoj kumar
    Goyal, Anil
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (02)
  • [48] GEOMETRY OF LIGHTLIKE HYPERSURFACES OF AN INDEFINITE COSYMPLECTIC MANIFOLD
    Jin, Dae Ho
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (01): : 185 - 195
  • [49] On Contact CR-Submanifolds of a Cosymplectic Manifold
    Dirik, Suleyman
    FILOMAT, 2018, 32 (13) : 4787 - 4801
  • [50] Generic Lightlike Submanifolds of an Indefinite Cosymplectic Manifold
    Jin, Dae Ho
    Lee, Jae Won
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011