Periodic solutions to impulsive differential inclusions with constraints

被引:14
|
作者
Kryszewski, Wojciech [1 ]
Plaskacz, Slawomir [1 ]
机构
[1] Nicholas Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
关键词
periodic solutions; impulsive differential inclusions; Lefschetz fixed point theorem;
D O I
10.1016/j.na.2005.11.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of a periodic solution to an impulsive differential inclusion being invariant with respect to a non-convex set of state constraints is established by the use a Lefschetz type fixed-point theorem for set-valued maps. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1794 / 1804
页数:11
相关论文
共 50 条
  • [21] On first order impulsive differential inclusions with periodic boundary conditions
    Benchohra, M
    Henderson, J
    Ntouyas, SK
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2002, 9 (03): : 417 - 427
  • [22] On the state estimation problem for impulsive differential inclusions with state constraints
    Filippova, TF
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 1285 - 1289
  • [23] Set-valued solutions to impulsive differential inclusions
    Filippova, TF
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2005, 11 (02) : 149 - 158
  • [24] Impulsive differential equations: Periodic solutions and applications
    Li, Xiaodi
    Bohner, Martin
    Wang, Chuan-Kui
    AUTOMATICA, 2015, 52 : 173 - 178
  • [25] Periodic Solutions of Sublinear Impulsive Differential Equations
    Niu, Yanmin
    Li, Xiong
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (02): : 439 - 452
  • [26] Periodic solutions of delay impulsive differential equations
    Liang, Jin
    Liu, James H.
    Xiao, Ti-Jun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6835 - 6842
  • [27] PERIODIC-SOLUTIONS TO DIFFERENTIAL-INCLUSIONS
    GAINES, RE
    PETERSON, JK
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1981, 5 (10) : 1109 - 1131
  • [28] Topological degree and periodic solutions of differential inclusions
    De Blasi, Francesco S.
    Górniewicz, Lech
    Pianigiani, Giulio
    Nonlinear Analysis, Theory, Methods and Applications, 1999, 37 (02): : 217 - 245
  • [29] Topological degree and periodic solutions of differential inclusions
    de Blasi, FS
    Górniewicz, L
    Pianigini, G
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (02) : 217 - 243
  • [30] Discrete approximations and periodic solutions of differential inclusions
    V. S. Klimov
    N. A. Dem’yankov
    Differential Equations, 2013, 49 : 235 - 245