LI-YORKE CHAOS FOR DENDRITE MAPS WITH ZERO TOPOLOGICAL ENTROPY AND ω-LIMIT SETS

被引:8
|
作者
Askri, Ghassen [1 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Dept Math, Jarzouna 7021, Tunisia
关键词
Dendrite; dendrite map; omega-limit set; periodic points; Li-Yorke pair; Li-Yorke chaos; END-POINTS;
D O I
10.3934/dcds.2017127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a dendrite with set of endpoints E(X) closed and let f : X -> X be a continuous map with zero topological entropy. Let P( f) be the set of periodic points off and let L be an omega-limit set of f. We prove that if L is infinite then L boolean AND P(f) subset of E(X)', where E(X)' is the set of all accumulations points of E(X). Furthermore, if E(X) is countable and L is uncountable then L boolean AND P(f) = phi. We also show that if E(X)' is finite and L is uncountable then there is a sequence of subdendrites (D-k)k >= 1 of X and a sequence of integers n(k) >= 2 satisfying the following properties. For all k >= 1, 1. f(alpha k) (Dk) = Dk where alpha(k) = n(1)n(2) . . . n(k), 2. U-k(n)j (-1)(=0) f(k alpha j) 1 (D-j) subset of Dj-1 for all j >= 2, 3. L subset of boolean OR(alpha k-1) f(i)(Dk), 4. f(L boolean AND f(i)(Dk)) L boolean AND) f(i+1)(Dk) for any 0 <= i <= ak 1. In particular, L boolean AND fi(Dk) 0, 5. f (Dk) boolean AND f (Dk) has empty interior for any 0 <= i j <= alpha k, . As a consequence, if f has a Li-Yorke pair (x, y) with wf(x) or wf (y) uncountable then f is Li-Yorke chaotic.
引用
收藏
页码:2957 / 2976
页数:20
相关论文
共 50 条
  • [11] TRANSITIVITY, ENTROPY AND LI-YORKE CHAOS OF MULTIPLE MAPPINGS
    Zhao, Yingcui
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2024, 86 (02): : 85 - 96
  • [12] Chaos in the sense of Li-Yorke and the order of the inverse limit space
    LU Jie and YE XiangdongDepartment of Mathematics
    Chinese Science Bulletin, 1999, (11) : 988 - 992
  • [13] Chaos in the sense of Li-Yorke and the order of the inverse limit space
    Lü, J
    Ye, XD
    CHINESE SCIENCE BULLETIN, 1999, 44 (11): : 988 - 992
  • [14] RELATIONSHIP BETWEEN LI-YORKE CHAOS AND POSITIVE TOPOLOGICAL SEQUENCE ENTROPY IN NONAUTONOMOUS DYNAMICAL SYSTEMS
    Sotola, Jakub
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (10) : 5119 - 5128
  • [15] Li-Yorke chaos in the system with impacts
    Akhmet, M. U.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (02) : 804 - 810
  • [16] Perturbed Li-Yorke homoclinic chaos
    Akhmet, Marat
    Feckan, Michal
    Fen, Mehmet Onur
    Kashkynbayev, Ardak
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (75) : 1 - 18
  • [17] Li-Yorke chaos of translation semigroups
    Wu, Xinxing
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (01) : 49 - 57
  • [18] Li-Yorke chaos in linear dynamics
    Bernardes, N. C., Jr.
    Bonilla, A.
    Mueller, V.
    Peris, A.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 1723 - 1745
  • [19] FOR GRAPH MAPS, ONE SCRAMBLED PAIR IMPLIES LI-YORKE CHAOS
    Ruette, Sylvie
    Snoha, L'Ubomir
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (06) : 2087 - 2100
  • [20] Unimodal mappings and Li-Yorke chaos
    Dobrynskii, VA
    MATHEMATICAL NOTES, 1998, 63 (5-6) : 598 - 607