Lifting problem for universal quadratic forms

被引:21
|
作者
Kala, Vitezslav [1 ]
Yatsyna, Pavlo [1 ]
机构
[1] Charles Univ Prague, Dept Algebra, Fac Math & Phys, Sokolovska 49-83, Prague 186758, Czech Republic
关键词
Universal quadratic form; Totally real number field; Trace form; Lattice of E-type; Dedekind zeta function; Additively indecomposable integer; TOTALLY POSITIVE NUMBERS; DEFINITE; SQUARES; SUMS; REPRESENTATIONS; LATTICES; FIELDS; DECOMPOSITION; INTEGERS; ORDERS;
D O I
10.1016/j.aim.2020.107497
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study totally real number fields that admit a universal quadratic form whose coefficients are rational integers. We show that Q(root 5) is the only such real quadratic field, and that among fields of degrees 3, 4, 5, and 7 which have principal codifferent ideal, the only one is Q(zeta(7) + zeta(-1)(7)), over which the form x(2) + y(2) + z(2) + w(2) + xy + xz + xw is universal. Moreover, we prove an upper bound for Pythagoras numbers of orders in number fields that depends only on the degree of the number field. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Universal quadratic forms over polynomial rings
    Kim, Myung-Hwan
    Wang, Yuanhua
    Fei Xu
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (05) : 1311 - 1322
  • [22] Universal quadratic forms over multiquadratic fields
    Kala, Vitezslav
    Svoboda, Josef
    RAMANUJAN JOURNAL, 2019, 48 (01): : 151 - 157
  • [23] PRIME-UNIVERSAL DIAGONAL QUADRATIC FORMS
    Ju, Jangwon
    Kim, Daejun
    Kim, Kyoungmin
    Kim, Mingyu
    Oh, Byeong-Kweon
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (03) : 390 - 404
  • [24] Universal quadratic forms and Dedekind zeta functions
    Kala, Vitezslav
    Melistas, Mentzelos
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024,
  • [25] ON PRIMITIVELY 2-UNIVERSAL QUADRATIC FORMS
    Budarina, N. V.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2012, 23 (03) : 435 - 458
  • [26] Universal quadratic forms over multiquadratic fields
    Vítězslav Kala
    Josef Svoboda
    The Ramanujan Journal, 2019, 48 : 151 - 157
  • [27] On universal sets of positive ternary quadratic forms
    Albert, AA
    ANNALS OF MATHEMATICS, 1933, 34 : 875 - 878
  • [28] UNIVERSAL QUADRATIC FORMS AND ELEMENTS OF SMALL NORM IN REAL QUADRATIC FIELDS
    Kala, Vitezslav
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 94 (01) : 7 - 14
  • [29] A DESCENT PROBLEM FOR QUADRATIC-FORMS
    KAHN, B
    DUKE MATHEMATICAL JOURNAL, 1995, 80 (01) : 139 - 155
  • [30] A second descent problem for quadratic forms
    Kahn, B
    Laghribi, A
    K-THEORY, 2003, 29 (04): : 253 - 284