Space-time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions

被引:61
|
作者
Ailliot, Pierre [1 ]
Thompson, Craig [2 ]
Thomson, Peter [3 ]
机构
[1] Univ Brest, Math Lab, F-29285 Brest, France
[2] Natl Inst Water & Atmospher Res, Wellington, New Zealand
[3] Stat Res Associates Ltd, Wellington, New Zealand
关键词
Censored Gaussian distribution; Hidden Markov model; Monte Carlo EM algorithm; Precipitation; Space-time model; SYNOPTIC ATMOSPHERIC PATTERNS; MAXIMUM-LIKELIHOOD; STOCHASTIC-MODEL; GENERATION; SIMULATION; CONVERGENCE;
D O I
10.1111/j.1467-9876.2008.00654.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new hidden Markov model for the space-time evolution of daily rainfall is developed which models precipitation within hidden regional weather types by censored power-transformed Gaussian distributions. The latter provide flexible and interpretable multivariate models for the mixed discrete-continuous variables that describe both precipitation, when it occurs, and no precipitation. Parameter estimation is performed by using a Monte Carlo EM algorithm whose use and performance are evaluated by simulation studies. The model is fitted to rainfall data from a small network of stations in New Zealand encompassing a diverse range of orographic effects. The results that are obtained show that the marginal distributions and spatial structure of the data are well described by the fitted model which provides a better description of the spatial structure of precipitation than a standard hidden Markov model that is commonly used in the literature. However, the fitted model, like the standard hidden Markov model, cannot fully reproduce the local dynamics and underestimates the lag 1 auto-correlations.
引用
收藏
页码:405 / 426
页数:22
相关论文
共 50 条
  • [21] Modelling and estimation of the fundamental frequency of speech using a hidden Markov model
    Taylor, John H.
    Milner, Ben
    14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 1925 - 1929
  • [22] Modelling of crude oil price data using hidden Markov model
    Kadhem, Safaa
    Thajel, Haider
    JOURNAL OF RISK FINANCE, 2023, 24 (02) : 269 - 284
  • [23] Human Gait Modelling Using Hidden Markov Model For Abnormality Detection
    Chattopadhyay, Sourav
    Nandy, Anup
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 0623 - 0628
  • [24] A Nonstationary Space-Time Gaussian Process Model for Partially Converged Simulations
    Picheny, Victor
    Ginsbourger, David
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2013, 1 (01): : 57 - 78
  • [25] Decoding and modelling of time series count data using Poisson hidden Markov model and Markov ordinal logistic regression models
    Sebastian, Tunny
    Jeyaseelan, Visalakshi
    Jeyaseelan, Lakshmanan
    Anandan, Shalini
    George, Sebastian
    Bangdiwala, Shrikant I.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (05) : 1552 - 1563
  • [26] APPLICATION OF A SPACE-TIME STOCHASTIC-MODEL FOR DAILY PRECIPITATION USING ATMOSPHERIC CIRCULATION PATTERNS
    BOGARDI, I
    MATYASOVSZKY, I
    BARDOSSY, A
    DUCKSTEIN, L
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1993, 98 (D9) : 16653 - 16667
  • [27] Markov Financial Model Using Hidden Markov Model
    Luc Tri Tuyen
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 40 (10): : 72 - 83
  • [28] Modelling Eye-Gaze Movement Using Gaussian Auto-regression Hidden Markov
    Xu, Beinan
    Song, Andy
    AI 2021: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, 13151 : 190 - 202
  • [29] GrailQuest : hunting for atoms of space and time hidden in the wrinkle of Space-Time
    Burderi, L.
    Sanna, A.
    Di Salvo, T.
    Amati, L.
    Amelino-Camelia, G.
    Branchesi, M.
    Capozziello, S.
    Coccia, E.
    Colpi, M.
    Costa, E.
    D'Amico, N.
    De Bernardis, P.
    De Laurentis, M.
    Valle, M. Della
    Falcke, H.
    Feroci, M.
    Fiore, F.
    Frontera, F.
    Gambino, A. F.
    Ghisellini, G.
    Hurley, K. C.
    Iaria, R.
    Kataria, D.
    Labanti, C.
    Lodato, G.
    Negri, B.
    Papitto, A.
    Piran, T.
    Riggio, A.
    Rovelli, C.
    Santangelo, A.
    Vidotto, F.
    Zane, S.
    EXPERIMENTAL ASTRONOMY, 2021, 51 (03) : 1255 - 1297
  • [30] Space-time multi type log Gaussian Cox processes with a view to modelling weeds
    Brix, A
    Moller, J
    SCANDINAVIAN JOURNAL OF STATISTICS, 2001, 28 (03) : 471 - 488