Repurposing of Anthocyanin Biosynthesis for Plant Transformation and Genome Editing

被引:17
|
作者
He, Yubing [1 ,2 ,3 ]
Zhu, Min [2 ,3 ]
Wu, Junhua [2 ,3 ]
Ouyang, Lejun [4 ]
Wang, Rongchen [5 ]
Sun, Hui [2 ,3 ]
Yan, Lang [2 ,3 ]
Wang, Lihao [2 ,3 ]
Xu, Meilian [2 ,3 ]
Zhan, Huadong [1 ]
Zhao, Yunde [6 ]
机构
[1] Nanjing Agr Univ, State Key Lab Crop Genet & Germplasm Enhancement, Nanjing, Peoples R China
[2] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan, Peoples R China
[3] Huazhong Agr Univ, Natl Ctr Plant Gene Res Wuhan, Wuhan, Peoples R China
[4] Guangdong Univ Petrochem Technol, Guangdong Lab Lingnan Modern Agr Sci & Technol, Maoming, Peoples R China
[5] Chinese Acad Sci, Key Lab Plant Resource Conservat & Sustainable Ut, South China Bot Garden, Guangzhou, Peoples R China
[6] Univ Calif San Diego, Sect Cell & Dev Biol, La Jolla, CA USA
来源
关键词
CRISPR; transgene-free; anthocyanin; rice; AAC; TARGETED MUTAGENESIS; TRANSGENIC RICE; GUIDE RNA; GENES; ARABIDOPSIS; MUTANTS; CRISPR; CAS9-FREE; MULTIPLEX; CLONING;
D O I
10.3389/fgeed.2020.607982
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
CRISPR/Cas9 gene editing technology has been very effective in editing genes in many plant species including rice. Here we further improve the current CRISPR/Cas9 gene editing technology in both efficiency and time needed for isolation of transgene-free and target gene-edited plants. We coupled the CRISPR/Cas9 cassette with a unit that activates anthocyanin biosynthesis, providing a visible marker for detecting the presence of transgenes. The anthocyanin-marker assisted CRISPR (AAC) technology enables us to identify transgenic events even at calli stage, to select transformants with elevated Cas9 expression, and to identify transgene-free plants in the field. We used the AAC technology to edit LAZY1 and G1 and successfully generated many transgene-free and target gene-edited plants at T1 generation. The AAC technology greatly reduced the labor, time, and costs needed for editing target genes in rice.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Plant genome editing with TALEN and CRISPR
    Aimee Malzahn
    Levi Lowder
    Yiping Qi
    Cell & Bioscience, 7
  • [22] Plant genome editing branches out
    Logan T. Hille
    Benjamin P. Kleinstiver
    Nature Plants, 2021, 7 : 4 - 5
  • [23] Genome editing technologies for plant physiology
    Ezure, Hiroshi
    Miura, Kenji
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 131 : 1 - 1
  • [24] Plant genome editing with TALEN and CRISPR
    Malzahn, Aimee
    Lowder, Levi
    Qi, Yiping
    CELL AND BIOSCIENCE, 2017, 7
  • [25] The way to true plant genome editing
    Sang-Gyu Kim
    Nature Plants, 2020, 6 : 736 - 737
  • [26] Recalcitrance to transformation, a hindrance for genome editing of legumes
    Nivya, V. M.
    Shah, Jasmine M.
    FRONTIERS IN GENOME EDITING, 2023, 5
  • [27] Maize tissue culture, transformation, and genome editing
    Albert P. Kausch
    Kimberly Nelson-Vasilchik
    Michael Tilelli
    Joel P. Hague
    In Vitro Cellular & Developmental Biology - Plant, 2021, 57 : 653 - 671
  • [28] Transformation of the plastid genome to study RNA editing
    Lutz, Kerry A.
    Maliga, Pal
    RNA EDITING, 2007, 424 : 501 - +
  • [29] Advancing Crop Transformation in the Era of Genome Editing
    Altpeter, Fredy
    Springer, Nathan M.
    Bartley, Laura E.
    Blechl, Ann E.
    Brutnell, Thomas P.
    Citovsky, Vitaly
    Conrad, Liza J.
    Gelvin, Stanton B.
    Jackson, David P.
    Kausch, Albert P.
    Lemaux, Peggy G.
    Medford, June I.
    Orozco-Cardenas, Martha L.
    Tricoli, David M.
    Van Eck, Joyce
    Voytas, Daniel F.
    Walbot, Virginia
    Wang, Kan
    Zhang, Zhanyuan J.
    Stewart, C. Neal, Jr.
    PLANT CELL, 2016, 28 (07): : 1510 - 1520
  • [30] Maize tissue culture, transformation, and genome editing
    Kausch, Albert P.
    Nelson-Vasilchik, Kimberly
    Tilelli, Michael
    Hague, Joel P.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2021, 57 (04) : 653 - 671