eta invariant;
Gromov-Lawson conjecture;
equivariant spin bordism;
D O I:
10.1016/S0166-8641(97)00003-5
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let M be a compact connected spin manifold of dimension m greater than or equal to 5. Assume the fundamental group of M is an elementary Abelian p group of rank k where p is an odd prime. If k = 2 and m is arbitrary or if k = 3 and m is odd, we use the eta invariant to show that M admits a metric of positive scalar curvature if and only if the (A) over cap-roof genus of M vanishes. This establishes the Gromov-Lawson conjecture for these cases. (C) 1997 Elsevier Science B.V.