XPS study of silicon surface after ultra-low-energy ion implantation

被引:10
|
作者
Yamamoto, Kazuhiro [1 ]
Itoh, Hiroshi [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Inst Instrumental Frontier, Tsukuba, Ibaraki 3058565, Japan
关键词
silicon; ion implantation; doping; phosphorus; surface; X-ray photoelectron spectroscopy;
D O I
10.1016/j.susc.2006.01.079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultra-low-energy ion implantation of silicon with a hydrogen-terminated (001) surface was carried out using a mass-separated P-31(+) ion beam. The ion energy was 30 eV, the displacement energy of silicon, and the ion doses were 6 x 10(13) ions/cm(2). Annealing after the implantation was not carried out. The effects of ion implantation on the surface electrical state of silicon were investigated using X-ray photoelectron spectroscopy (XPS). The Si 2p peak position using XPS depends on the doping conditions, because the Fermi level of the hydrogen-terminated silicon surface is unpinned. The Si 2p peak position of the specimen after ion implantation at vacuum pressure of 3 x 10(-7) Pa was shifted to the higher energy region. It suggested the possibility of phosphorus doping in silicon without annealing. In the case of ion implantation at 5 x 10(-5) Pa, the Si 2p peak position was not shifted, and the peak was broadened because of the damage by the fast neutrals. Ultra-low-energy ion doping can be achieved at ultra-high-vacuum conditions. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:3753 / 3756
页数:4
相关论文
共 50 条
  • [31] Structural properties of ultra-low-energy ion-implanted silicon studied by combined X-ray scattering methods
    Capello, L.
    Metzger, T. H.
    Holy, V.
    Servidori, M.
    Malachias, A.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2006, 39 : 571 - 581
  • [32] ULTRA-LOW-ENERGY STRAINTRONICS USING MULTIFERROIC COMPOSITES
    Roy, Kuntal
    SPIN, 2013, 3 (02)
  • [33] Cryostat for Ultra-Low-Energy Threshold Germanium Spectrometers
    Aalseth, Craig E.
    Bonicalzi, Ricco M.
    Fast, James E.
    Hossbach, Todd W.
    Orrell, John L.
    Overman, Cory T.
    Vandevender, Brent A.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2013, 60 (02) : 1168 - 1174
  • [34] XPS study of diamond surface after mass-separated low-energy phosphorus ion irradiation
    Yamamoto, K
    Watanabe, H
    Ogura, M
    DIAMOND AND RELATED MATERIALS, 2005, 14 (3-7) : 389 - 392
  • [35] Studies of low-energy ion implantation in silicon
    Wang, TS
    Cullis, AG
    Collart, EJH
    Murrell, AJ
    Foad, MA
    Van den Berg, JA
    MICROSCOPY OF SEMICONDUCTING MATERIALS 1999, PROCEEDINGS, 1999, (164): : 459 - 464
  • [36] Ultra-low-energy perspectives for regional Scottish dwellings
    Burford, Neil
    Pearson, Alexander
    INTELLIGENT BUILDINGS INTERNATIONAL, 2013, 5 (04) : 221 - 250
  • [37] Atomic collision experiments with ultra-low-energy antiprotons
    Torii, Hiroyuki A.
    Nagata, Yugo
    Imao, Hiroshi
    Varentsov, Victor L.
    Kuroda, Naofumi
    Shibata, Masahiro
    Ogata, Koremitsu
    Toyoda, Hiroshi
    Shimoyama, Takuya
    Enomoto, Yoshinori
    Higaki, Hiroyuki
    Kanai, Yasuyuki
    Mohri, Akihiro
    Yamazaki, Yasunori
    COLD ANTIMATTER PLASMAS AND APPLICATION TO FUNDAMENTAL PHYSICS, 2008, 1037 : 297 - +
  • [38] Ultra-low-energy defibrillation through adjoint optimization
    Garzon, Alejandro
    Grigoriev, Roman O.
    CHAOS, 2024, 34 (11)
  • [39] Ultra-low-energy straintronics using multiferroic composites
    Roy, Kuntal
    SPINTRONICS VII, 2014, 9167
  • [40] Modeling of ultra-low energy boron implantation in silicon
    Hobler, G
    Vuong, HH
    Bevk, J
    Agarwal, A
    Gossmann, HJ
    Foad, M
    Murrell, A
    Erokhin, Y
    INTERNATIONAL ELECTRON DEVICES MEETING - 1997, TECHNICAL DIGEST, 1997, : 489 - 492