Cnoidal Waves on Fermi-Pasta-Ulam Lattices

被引:15
|
作者
Friesecke, G. [1 ]
Mikikits-Leitner, A. [1 ]
机构
[1] Tech Univ Munich, Ctr Math, D-85748 Garching, Germany
基金
奥地利科学基金会;
关键词
Fermi-Pasta-Ulam problem; Korteweg-de Vries equation; Cnoidal wave solutions; Solitons; KORTEWEG-DEVRIES EQUATION; SOLITARY WAVES; TRAVELING-WAVES; FPU LATTICES; STABILITY; CHAIN; MODULATION; EXISTENCE; SPECTRUM; SOLITONS;
D O I
10.1007/s10884-013-9343-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a chain of infinitely many particles coupled by nonlinear springs, obeying the equations of motion with generic nearest-neighbour potential . We show that this chain carries exact spatially periodic travelling waves whose profile is asymptotic, in a small-amlitude long-wave regime, to the KdV cnoidal waves. The discrete waves have three interesting features: (1) being exact travelling waves they keep their shape for infinite time, rather than just up to a timescale of order wavelength suggested by formal asymptotic analysis, (2) unlike solitary waves they carry a nonzero amount of energy per particle, (3) analogous behaviour of their KdV continuum counterparts suggests long-time stability properties under nonlinear interaction with each other. Connections with the Fermi-Pasta-Ulam recurrence phenomena are indicated. Proofs involve an adaptation of the renormalization approach of Friesecke and Pego (Nonlinearity 12:1601-1627, 1999) to a periodic setting and the spectral theory of the periodic Schrodinger operator with KdV cnoidal wave potential.
引用
收藏
页码:627 / 652
页数:26
相关论文
共 50 条
  • [41] CONTINUUM APPROXIMATION OF THE FERMI-PASTA-ULAM LATTICE
    MARTINA, L
    LETTERE AL NUOVO CIMENTO, 1979, 25 (09): : 277 - 282
  • [42] Recent Results on the Fermi-Pasta-Ulam Problem
    L. Galgani
    A. Giorgilli
    Journal of Mathematical Sciences, 2005, 128 (2) : 2761 - 2766
  • [43] STOCHASTICITY THRESHOLDS IN THE FERMI-PASTA-ULAM MODEL
    CALLEGARI, B
    CAROTTA, MC
    FERRARIO, C
    LOVECCHIO, G
    GALGANI, L
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1979, 54 (02): : 463 - 468
  • [44] Energy cascade in Fermi-Pasta-Ulam models
    Ponno, A
    Bambusi, D
    SPT 2004: SYMMETRY AND PERTURBATION THEORY, 2005, : 263 - 270
  • [45] A fractional approach to the Fermi-Pasta-Ulam problem
    J. A. T. Machado
    The European Physical Journal Special Topics, 2013, 222 : 1795 - 1803
  • [46] Stochastic Resonance in the Fermi-Pasta-Ulam Chain
    Miloshevich, George
    Khomeriki, Ramaz
    Ruffo, Stefano
    PHYSICAL REVIEW LETTERS, 2009, 102 (02)
  • [47] QUANTUM BREATHERS IN THE β-FERMI-PASTA-ULAM MODEL
    Tang, Bing
    Li, De-Jun
    Hu, Ke
    Tang, Yi
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2013, 14 (04): : 301 - 308
  • [48] Subsonic solitons in the Fermi-Pasta-Ulam chain
    Dusi, R
    Wagner, M
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (02): : 485 - 490
  • [49] Quantum solitons in the Fermi-Pasta-Ulam model
    Li, De-Jun
    Tang, Bing
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2014, 28 (11):
  • [50] A fractional approach to the Fermi-Pasta-Ulam problem
    Machado, J. A. T.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (08): : 1795 - 1803