Strain tailoring in 3C-SiC heteroepitaxial layers grown on Si(100)

被引:36
|
作者
Ferro, Gabriel
Chassagne, Thierry
Leycuras, Andre
Cauwet, Francois
Monteil, Yves
机构
[1] Univ Lyon 1, CNRS, UMR 5615, Lab Multimat & Interfaces, F-69622 Villeurbanne, France
[2] NOVASiC, Savoie Technolac, F-73375 Le Bourget Du Lac, France
[3] CNRS, CRHEA, F-06560 Valbonne, France
关键词
3C-SiC; carbonization; silicon; silicon on insulators; strain reduction;
D O I
10.1002/cvde.200506461
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Due to the large differences in lattice parameters and thermal expansion coefficients, the heteroepitaxial growth of 3C-SiC on Si mainly results in highly defective layers on strongly bent wafers. The defects may not be detrimental for very basic applications, but the bow is. In this article, we review several attempts to reduce the final curvature after epitaxial growth of 3C-SiC. One is the use of the "checkerboard" carbonization process which creates a macroscopic balance of the stress by the formation of a regular network of compressed and tensed areas. Another approach proposes to create, in situ, a random patchwork of tensed and compressed areas during the carbonization step. The other attempts use substrates other than standard Si, namely silicon on insulator and Si-Ge substrates for compliance effect and closer thermal expansion mismatch with SiC, respectively. All techniques provoke a significant reduction of the strain in the deposited 3C-SiC layers.
引用
收藏
页码:483 / 488
页数:6
相关论文
共 50 条
  • [21] Simulations and experiments of 3C-SiC/Si heteroepitaxial growth
    Kitabatake, M
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1997, 202 (01): : 405 - 420
  • [22] Effect of hydrogen flow on growth of 3C-SiC heteroepitaxial layers on Si(111) substrates
    Yan, Guoguo
    Zhang, Feng
    Niu, Yingxi
    Yang, Fei
    Liu, Xingfang
    Wang, Lei
    Zhao, Wanshun
    Sun, Guosheng
    Zeng, Yiping
    APPLIED SURFACE SCIENCE, 2015, 353 : 744 - 749
  • [23] 5μm thick 3C-SiC layers grown on Ge-modified Si(100) substrates
    Zgheib, Ch.
    Nassar, E.
    Hamad, M.
    Nader, R.
    Masri, P.
    Pezoldt, J.
    Ferro, G.
    SUPERLATTICES AND MICROSTRUCTURES, 2006, 40 (4-6) : 638 - 643
  • [24] Heteroepitaxial 3C-SiC on Si (100) with flow-modulated carbonization process conditions
    Li, Yun
    Zhao, Zhifei
    Yu, Le
    Wang, Yi
    Yin, Zhijun
    Li, Zhonghui
    Han, Ping
    JOURNAL OF CRYSTAL GROWTH, 2019, 506 : 114 - 116
  • [25] Regrowth of 3C-SiC on CMP treated 3C-SiC/Si epitaxial layers
    Mank, H
    Moisson, C
    Turover, D
    Twigg, M
    Saddow, SE
    SILICON CARBIDE AND RELATED MATERIALS 2004, 2005, 483 : 197 - 200
  • [26] Sharp interface in epitaxial graphene layers on 3C-SiC(100)/Si(100) wafers
    Ouerghi, A.
    Ridene, M.
    Balan, A.
    Belkhou, R.
    Barbier, A.
    Gogneau, N.
    Portail, M.
    Michon, A.
    Latil, S.
    Jegou, P.
    Shukla, A.
    PHYSICAL REVIEW B, 2011, 83 (20):
  • [27] Potential of HMDS/C3H8 precursor system for the growth of state of the art heteroepitaxial 3C-SiC layers on Si(100)
    Ferro, G
    Camassel, J
    Juillaguet, S
    Balloud, C
    Polychroniadis, EK
    Stoimenos, Y
    Seigle-Ferrand, P
    Dazord, J
    Monteil, Y
    Rushworth, SA
    Smith, LM
    SILICON CARBIDE AND RELATED MATERIALS 2003, PRTS 1 AND 2, 2004, 457-460 : 281 - 284
  • [28] Heteroepitaxial growth of 3C-SiC on (100) silicon by C60 and Si molecular beam epitaxy
    Volz, K
    Schreiber, S
    Gerlach, JW
    Reiber, W
    Rauschenbach, B
    Stritzker, B
    Assmann, W
    Ensinger, W
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 289 (1-2): : 255 - 264
  • [29] Heteroepitaxial 3C-SiC on Si with Various Carbonization Process Conditions
    Kim, Byeung C.
    Coy, John
    Kim, Sangho
    Capano, Michael A.
    JOURNAL OF ELECTRONIC MATERIALS, 2009, 38 (04) : 581 - 585
  • [30] Heteroepitaxial 3C-SiC on Si with Various Carbonization Process Conditions
    Byeung C. Kim
    John Coy
    Sangho Kim
    Michael A. Capano
    Journal of Electronic Materials, 2009, 38 : 581 - 585