A Data-driven, Multi-setpoint Model Predictive Thermal Control System for Data Centers

被引:12
|
作者
Mirhoseininejad, SeyedMorteza [1 ]
Badawy, Ghada [2 ]
Down, Douglas G. [1 ]
机构
[1] McMaster Univ, 1280 Main St W, Hamilton, ON, Canada
[2] Comp Infrastruct Res Ctr, 175 Longwood Rd, Hamilton, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Data center workload assignment; Cooling unit control; Thermal-aware scheduling; Thermal model; Data center power efficiency; Efficient cooling; Model predictive control; Multi setpoint control; MANAGEMENT; OPTIMIZATION;
D O I
10.1007/s10922-020-09574-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a system for jointly managing cooling units and workload assignment in modular data centers. The system aims to minimize power consumption while respecting temperature constraints, all in a thermally heterogeneous environment. Unlike traditional cooling controllers, which may over/under cool certain areas in the data center due to the use of a single setpoint, our framework does not have a single setpoint to satisfy. Instead, using a data-driven thermal model, the proposed system generates an optimal temperature map, the required temperature distribution matrix (RTDM), to be used by the controller, eliminating under/over cooling and improving power efficiency. The RTDM is the resulting temperature distribution when jointly considering workload assignment and cooling control. In addition, we propose the use of model predictive control (MPC) to regulate the operational variables of cooling units in a power-efficient fashion to comply with the RTDM. Within each iteration of the MPC loop, an optimization problem involving the thermal model is solved, and the underlying thermal model is updated. To prove the feasibility of the proposed power efficient system, it has been implemented on an actual modular data center in our facilities. Results from the implementation show the potential for considerable power savings compared to other control methods.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Data-Driven Model Predictive Control With Stability and Robustness Guarantees
    Berberich, Julian
    Koehler, Johannes
    Mueller, Matthias A.
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) : 1702 - 1717
  • [22] Data-driven Model Predictive Control with Matrix Forgetting Factor
    Calderon, Horacio M.
    Schulz, Erik
    Oehlschlaegel, Thimo
    Werner, Herbert
    IFAC PAPERSONLINE, 2023, 56 (02): : 10077 - 10082
  • [23] Synthesis of model predictive control based on data-driven learning
    Yuanqiang Zhou
    Dewei Li
    Yugeng Xi
    Zhongxue Gan
    Science China Information Sciences, 2020, 63
  • [24] Data-driven model predictive control for precision irrigation management
    Bwambale, Erion
    Abagale, Felix K.
    Anornu, Geophrey K.
    SMART AGRICULTURAL TECHNOLOGY, 2023, 3
  • [25] A data-driven approach for model predictive control performance monitoring
    Zhang, Guang-Ming
    Li, Ning
    Li, Shao-Yuan
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2011, 45 (08): : 1113 - 1118
  • [26] Data-Driven Optimization Framework for Nonlinear Model Predictive Control
    Zhang, Shiliang
    Cao, Hui
    Zhang, Yanbin
    Jia, Lixin
    Ye, Zonglin
    Hei, Xiali
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [27] Data-driven model predictive control for ships with Gaussian process
    Xu, Peilong
    Qin, Hongde
    Ma, Jingran
    Deng, Zhongchao
    Xue, Yifan
    OCEAN ENGINEERING, 2023, 268
  • [28] Data-Driven Incremental Model Predictive Control for Robot Manipulators
    Wang, Yongchao
    Zhou, Yuhang
    Liu, Fangzhou
    Leibold, Marion
    Buss, Martin
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024,
  • [29] Data-driven Model Predictive Control for Drop Foot Correction
    Singh, Mayank
    Sharma, Nitin
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 2615 - 2620
  • [30] Synthesis of model predictive control based on data-driven learning
    Yuanqiang ZHOU
    Dewei LI
    Yugeng XI
    Zhongxue GAN
    ScienceChina(InformationSciences), 2020, 63 (08) : 251 - 253