Effects of the spike timing-dependent plasticity on the synchronisation in a random Hodgkin-Huxley neuronal network

被引:37
|
作者
Borges, R. R. [1 ,2 ]
Borges, F. S. [1 ]
Lameu, E. L. [1 ]
Batista, A. M. [1 ,3 ,4 ]
Iarosz, K. C. [4 ]
Caldas, I. L. [4 ]
Viana, R. L. [5 ]
Sanjuan, M. A. F. [6 ]
机构
[1] Univ Estadual Ponta Grossa, Posgrad Ciencias, BR-84030900 Ponta Grossa, PR, Brazil
[2] Univ Tecnol Fed Parana, Dept Matemat, BR-86812460 Apucarana, PR, Brazil
[3] Univ Estadual Ponta Grossa, Dept Matemat & Estat, BR-84030900 Ponta Grossa, PR, Brazil
[4] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil
[5] Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, PR, Brazil
[6] Univ Rey Juan Carlos, Dept Fis, Madrid 28933, Spain
基金
巴西圣保罗研究基金会;
关键词
Plasticity; Neuronal network; Synchronisation; CORRELATED ACTIVITY; MODEL; POTENTIATION; AREA;
D O I
10.1016/j.cnsns.2015.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the effects of spike timing-dependent plasticity on synchronisation in a network of Hodgkin-Huxley neurons. Neuron plasticity is a flexible property of a neuron and its network to change temporarily or permanently their biochemical, physiological, and morphological characteristics, in order to adapt to the environment. Regarding the plasticity, we consider Hebbian rules, specifically for spike timing dependent plasticity (STOP), and with regard to network, we consider that the connections are randomly distributed. We analyse the synchronisation and desynchronisation according to an input level and probability of connections. Moreover, we verify that the transition for synchronisation depends on the neuronal network architecture, and the external perturbation level. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:12 / 22
页数:11
相关论文
共 50 条
  • [41] Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity
    Urakubo, Hidetoshi
    Honda, Minoru
    Froemke, Robert C.
    Kuroda, Shinya
    JOURNAL OF NEUROSCIENCE, 2008, 28 (13): : 3310 - 3323
  • [42] The effect of spike redistribution in a reciprocally connected pair of neurons with spike timing-dependent plasticity
    Hernández, G
    Rubin, J
    Munro, P
    NEUROCOMPUTING, 2003, 52-4 : 347 - 353
  • [43] Does spike timing-dependent synaptic plasticity underlie memory formation?
    Letzkus, Johannes J.
    Kampa, Bjorn M.
    Stuart, Greg J.
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2007, 34 (10) : 1070 - 1076
  • [44] Spike Timing-Dependent Synaptic Plasticity in Visual Cortex: A Modeling Study
    Yao-Song Shen
    Hongfeng Gao
    Haishan Yao
    Journal of Computational Neuroscience, 2005, 18 : 25 - 39
  • [45] SPIKE TIMING-DEPENDENT PLASTICITY OF NEURAL CIRCUITS : HEBB POSTULATE REVISITED
    Poo, Mu-Ming
    JOURNAL OF PHYSIOLOGICAL SCIENCES, 2009, 59 : 7 - 7
  • [46] Spike timing-dependent plasticity at GABAergic synapses in the ventral tegmental area
    Kodangattil, Jayaraj N.
    Dacher, Matthieu
    Authement, Michael E.
    Nugent, Fereshteh S.
    JOURNAL OF PHYSIOLOGY-LONDON, 2013, 591 (19): : 4699 - 4710
  • [47] Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex
    Bender, VA
    Bender, KJ
    Brasier, DJ
    Feldman, DE
    JOURNAL OF NEUROSCIENCE, 2006, 26 (16): : 4166 - 4177
  • [48] Pavlov's moth: olfactory learning and spike timing-dependent plasticity
    Meeks, Julian P.
    Holy, Timothy E.
    NATURE NEUROSCIENCE, 2008, 11 (10) : 1126 - 1127
  • [49] Distinct coincidence detectors govern the corticostriatal spike timing-dependent plasticity
    Fino, Elodie
    Paille, Vincent
    Cui, Yihui
    Morera-Herreras, Teresa
    Deniau, Jean-Michel
    Venance, Laurent
    JOURNAL OF PHYSIOLOGY-LONDON, 2010, 588 (16): : 3045 - 3062
  • [50] Pseudo-Lyapunov exponents and predictability of Hodgkin-Huxley neuronal network dynamics
    Yi Sun
    Douglas Zhou
    Aaditya V. Rangan
    David Cai
    Journal of Computational Neuroscience, 2010, 28 : 247 - 266