Bending-induced deformation twinning in body-centered cubic tungsten nanowires

被引:40
|
作者
Wei, Siyuan [1 ,2 ]
Wang, Qiannan [1 ,2 ]
Wei, Hua [3 ]
Wang, Jiangwei [1 ,2 ]
机构
[1] Zhejiang Univ, Ctr Electron Microscopy, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, State Key Lab Silicon Mat, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, Hypergrav Res Ctr, Hangzhou, Zhejiang, Peoples R China
来源
MATERIALS RESEARCH LETTERS | 2019年 / 7卷 / 05期
基金
中国国家自然科学基金;
关键词
Bending; body-centered cubic; twinning; dislocation; tungsten nanowire; ATOMISTIC SIMULATIONS; SCREW DISLOCATIONS; STRENGTH; DEFECTS;
D O I
10.1080/21663831.2019.1578833
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The competition between dislocation slip and deformation twinning in body-centered cubic (BCC) nanocrystals can be strongly influenced by the deformation conditions. In this study, we investigate the deformation of [112]-oriented BCC tungsten nanowires under different loading modes. It shows that dislocation plasticity is a predominant deformation mode under uniaxial tension, while deformation twinning prevails when non-uniaxial stress is applied. The interfaces of bending-induced twinning are composed of numerous stepwise {112} twin boundaries. These findings shed light on the deformation mechanism of BCC nanocrystals under complex loading conditions. [GRAPHICS] . IMPACT STATEMENTIn situ nanomechanical testing and quantitative analysis reveal a deformation mechanism transition in tungsten nanowires, from dislocation slip under the uniaxial loading to deformation twinning under the non-uniaxial loading.
引用
收藏
页码:210 / 216
页数:7
相关论文
共 50 条
  • [41] THEORETICAL ANALYSIS OF PLASTIC DEFORMATION IN SUPERLATTICES BASED ON BODY-CENTERED CUBIC STRUCTURE
    MARCINKOWSKI, MJ
    FISHER, RM
    JOURNAL OF APPLIED PHYSICS, 1963, 34 (08) : 2135 - &
  • [42] Molecular dynamics simulations of shock-induced deformation twinning of a body-centered-cubic metal
    Higginbotham, A.
    Suggit, M. J.
    Bringa, E. M.
    Erhart, P.
    Hawreliak, J. A.
    Mogni, G.
    Park, N.
    Remington, B. A.
    Wark, J. S.
    PHYSICAL REVIEW B, 2013, 88 (10)
  • [43] Molecular dynamics simulation of symmetrical tilt grain boundary of body-centered cubic tungsten
    Liang C.-P.
    Wang W.-Q.
    Tang S.
    Liu W.-S.
    Ma Y.-Z.
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2021, 31 (07): : 1757 - 1766
  • [44] Molecular dynamics studies of body-centered cubic tungsten during melting under pressure
    Liu Chun-Mei
    Xu Chao
    Cheng Yan
    Chen Xiang-Rong
    Cai Ling-Cang
    CHINESE JOURNAL OF PHYSICS, 2017, 55 (06) : 2468 - 2475
  • [45] Synthesis of body-centered cubic carbon nanocrystals
    Liu, P.
    Cui, H.
    Yang, G. W.
    CRYSTAL GROWTH & DESIGN, 2008, 8 (02) : 581 - 586
  • [46] FREQUENCY SPECTRA OF BODY-CENTERED CUBIC LATTICES
    CLARK, BC
    WALLIS, RF
    GAZIS, DC
    PHYSICAL REVIEW, 1964, 134 (6A): : 1486 - +
  • [47] COUPLING COEFFICIENTS FOR BODY-CENTERED CUBIC SOLIDS
    GARG, PK
    GUPTA, NP
    JOURNAL OF CHEMICAL PHYSICS, 1973, 59 (01): : 558 - 558
  • [48] MOBILITY OF DISLOCATIONS IN BODY-CENTERED CUBIC METALS
    KROUPA, F
    SESTAK, B
    CESKOSLOVENSKY CASOPIS PRO FYSIKU SEKCE A, 1977, 27 (04): : 342 - 353
  • [49] MAGNETIC PHASES OF BODY-CENTERED CUBIC MANGANESE
    SLIWKO, VL
    BLAHA, P
    MOHN, P
    SCHWARZ, K
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1993, 7 (1-3): : 614 - 617
  • [50] VACANCY RELAXATION IN BODY-CENTERED CUBIC METALS
    GRIMES, HH
    RICE, JH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (07): : 958 - &