A Note on Quasi-Lie and Hom-Lie Structures of σ-Derivations of C[z1±1, ... ,zn±1]

被引:11
|
作者
Richard, Lionel [1 ]
Silvestrov, Sergei [2 ]
机构
[1] Univ Edinburgh, Sch Math, Maxwell Inst Math Sci, JCMB Kings Bldg, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Lund Univ, Ctr Math Sci, S-22100 Lund, Sweden
基金
英国工程与自然科学研究理事会; 瑞典研究理事会;
关键词
ALGEBRAS; DEFORMATIONS;
D O I
10.1007/978-3-540-85332-9_22
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous paper we studied the properties of the bracket defined by Hartwig, Larsson and the second author in (J. Algebra 295, 2006) on sigma-derivations of Laurent polynomials in one variable. Here we consider the case of several variables, and emphasize on the question of when this bracket defines a hom-Lie structure rather than a quasi-Lie one.
引用
收藏
页码:257 / +
页数:2
相关论文
共 50 条
  • [42] Toeplitz algebras, subnormal tuples and rigidity on reproducing C[z1, •••, zd]-modules
    Guo, KY
    Hu, JY
    Xu, XM
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 210 (01) : 214 - 247
  • [43] MIRROR SYMMETRY FOR THE LANDAU-GINZBURG A-MODEL M = Cn, W = z1 . . . zn
    Nadler, David
    DUKE MATHEMATICAL JOURNAL, 2019, 168 (01) : 1 - 84
  • [44] LIE STRUCTURES IN PARASUPERSYMMETRIC QUANTUM-MECHANICS .1. THE STANDARD SUPERSYMMETRIZATION PROCEDURE
    BECKERS, J
    DEBERGH, N
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (07) : 1808 - 1814
  • [45] Lie algebraic structures of some (1+2)-dimensional Lax integrable systems
    Chen, DY
    Xin, HW
    Zhang, DJ
    CHAOS SOLITONS & FRACTALS, 2003, 15 (04) : 761 - 770
  • [46] Z2-GRADED MODULES WITH ONE-DIMENSIONAL COMPONENTS OVER THE LIE-ALGEBRA A1(1)
    SPIRIN, SA
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1987, 21 (01) : 75 - 77
  • [47] A-PRIORI ESTIMATES FOR SOLVING THE DET(ZIJ)=PHI-(Z1,Z2,...,ZN,Z,X1,X2,......,XN) EQUATION
    POGORELOV, AV
    DOKLADY AKADEMII NAUK SSSR, 1983, 272 (04): : 792 - 794
  • [48] Search for the Z1(4050)+ and Z2(4250)+ states in (B)over-bar0 → χc1K-π+ and B+ → χc1KS0π+
    Lees, J. P.
    Poireau, V.
    Tisserand, V.
    Garra Tico, J.
    Grauges, E.
    Martinelli, M.
    Milanes, D. A.
    Palano, A.
    Pappagallo, M.
    Eigen, G.
    Stugu, B.
    Brown, D. N.
    Kerth, L. T.
    Kolomensky, Yu. G.
    Lynch, G.
    Koch, H.
    Schroeder, T.
    Asgeirsson, D. J.
    Hearty, C.
    Mattison, T. S.
    McKenna, J. A.
    Khan, A.
    Blinov, V. E.
    Buzykaev, A. R.
    Druzhinin, V. P.
    Golubev, V. B.
    Kravchenko, E. A.
    Onuchin, A. P.
    Serednyakov, S. I.
    Skovpen, Yu. I.
    Solodov, E. P.
    Todyshev, K. Yu.
    Yushkov, A. N.
    Bondioli, M.
    Kirkby, D.
    Lankford, A. J.
    Mandelkern, M.
    Stoker, D. P.
    Atmacan, H.
    Gary, J. W.
    Liu, F.
    Long, O.
    Vitug, G. M.
    Campagnari, C.
    Hong, T. M.
    Kovalskyi, D.
    Richman, J. D.
    West, C. A.
    Eisner, A. M.
    Kroseberg, J.
    PHYSICAL REVIEW D, 2012, 85 (05):
  • [49] Triangle singularities in (B)over-bar0 → χc1K- π+ relevant to Z1 (4050) and Z2 (4250)
    Nakamura, Satoshi X.
    PHYSICAL REVIEW D, 2019, 100 (01)