The (distance) signless Laplacian spectral radii of digraphs with given dichromatic number

被引:0
|
作者
Li, Jinxi [1 ]
You, Lihua [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph; Dichromatic number; Signless Laplacian spectral radius; Distance signless Laplacian spectral radius; STRONGLY CONNECTED DIGRAPHS; CHROMATIC NUMBER; MATRIX; GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we characterize the extremal digraph with the maximal signless Laplacian spectral radius and the minimal distance sign less Laplacian spectral radius among all simple connected digraphs with given dichromatic number, respectively.
引用
收藏
页码:257 / 267
页数:11
相关论文
共 50 条
  • [31] On the spectral radius and energy of signless Laplacian matrix of digraphs
    Ganie, Hilal A.
    Shang, Yilun
    HELIYON, 2022, 8 (03)
  • [32] Bounds on the distance signless Laplacian spectral radius in terms of clique number
    Lin, Huiqiu
    Lu, Xiwen
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (09): : 1750 - 1759
  • [33] Sharp bounds on the signless Laplacian spectral radii of graphs
    Yu, Guanglong
    Wu, Yarong
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (03) : 683 - 687
  • [34] The Signless Laplacian Spectral Radii and Spread of Bicyclic Graphs
    Fengmei SUN
    Ligong WANG
    Journal of Mathematical Research with Applications, 2014, 34 (02) : 127 - 136
  • [35] Ordering of the signless Laplacian spectral radii of unicyclic graphs
    Wei, Fi-Yi
    Liu, Muhuo
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 49 : 255 - 264
  • [36] The signless p-Laplacian spectral radius of graphs with given matching number
    Chen, Zhouyang
    Feng, Lihua
    Liu, Weijun
    Lu, Lu
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (14): : 2366 - 2374
  • [37] The maximal (signless Laplacian) spectral radius of connected graphs with given matching number
    Chen, Xiaodan
    Lu, Fuliang
    ARS COMBINATORIA, 2016, 126 : 237 - 247
  • [38] Spectral radius and signless Laplacian spectral radius of strongly connected digraphs
    Hong, Wenxi
    You, Lihua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 457 : 93 - 113
  • [39] SOME UPPER BOUNDS FOR THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF DIGRAPHS
    Xi, Weige
    Wang, Ligong
    TRANSACTIONS ON COMBINATORICS, 2019, 8 (04) : 49 - 60
  • [40] THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF SOME STRONGLY CONNECTED DIGRAPHS
    Li, Xihe
    Wang, Ligong
    Zhang, Shangyuan
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (01): : 113 - 127