Hierarchical Estimation for Adaptive Visual Tracking

被引:0
|
作者
Yun, SeokMin [1 ]
Na, JinHee [1 ]
Kang, Woo-Sung [1 ]
Choi, JinYoung [1 ]
机构
[1] Seoul Natl Univ, ASRI, Dept EECS, Seoul, South Korea
来源
19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6 | 2008年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel approach which integrates adaptive appearance model and hierarchical estimation mechanism composed of global estimation and local estimation. Hierarchical estimation runs in two phases: In first phase, global estimation coarsely predicts a region in where true state may be present, and then local estimation tries to find out the true state inside the region at second phase. The benefits from Hierarchical estimation are two-fold, on one hand, it reduces the number of particles significantly, which enables real-time tracking, while on the other hand, it improves tracking accuracy even with less number of particles. Experimental results show the effectiveness and robustness of the proposed approach.
引用
收藏
页码:3133 / 3136
页数:4
相关论文
共 50 条
  • [31] A Comparison Study on the Adaptive Scale Estimation of Correlation Filter-based Visual Tracking Methods
    Wang, Z. L.
    Cai, B. G.
    Wang, Y. L.
    Lv, G. Y.
    Shan, R. C.
    Zhang, M.
    2017 IEEE INTERNATIONAL CONFERENCE ON REAL-TIME COMPUTING AND ROBOTICS (RCAR), 2017, : 471 - 476
  • [32] Kernel density estimation in adaptive tracking
    Bercu, Bernard
    Portier, Bruno
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 3441 - 3445
  • [33] Covariance Intersection Fusion for Visual Tracking with Hierarchical Features
    Pu, Lei
    Feng, Xinxi
    Hou, Zhiqiang
    TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [34] Extended Hierarchical Temporal Memory for Visual Object Tracking
    Krys, Sebastian
    Jankowski, Stanislaw
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2011, 2011, 8008
  • [35] Visual tracking based on hierarchical framework and sparse representation
    Yang Yi
    Yang Cheng
    Chuping Xu
    Multimedia Tools and Applications, 2018, 77 : 16267 - 16289
  • [36] Visual Object Tracking by Hierarchical Attention Siamese Network
    Shen, Jianbing
    Tang, Xin
    Dong, Xingping
    Shao, Ling
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3068 - 3080
  • [37] Visual Tracking via Hierarchical Deep Reinforcement Learning
    Zhang, Dawei
    Zheng, Zhonglong
    Jia, Riheng
    Li, Minglu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3315 - 3323
  • [38] Multi-Object Tracking by Hierarchical Visual Representations
    Cao, Jinkun
    Pang, Jiangmiao
    Kitani, Kris
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024, 2024, : 2667 - 2674
  • [39] Collaborative Visual Object Tracking via Hierarchical Structure
    Tu, Fangwen
    Ge, Shuzhi Sam
    Suryadi, Henry Pratama
    Tang, Yazhe
    Hang, Chang Chieh
    SOCIAL ROBOTICS, (ICSR 2016), 2016, 9979 : 413 - 421
  • [40] A hierarchical dynamic Bayesian network approach to visual tracking
    Li, H
    Xiao, R
    Zhang, HJ
    Peng, LZ
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2004, PT 2, PROCEEDINGS, 2004, 3332 : 617 - 624