Random Lie-point symmetries

被引:3
|
作者
Catuogno, Pedro Jose [1 ]
Lucinger, Luis Roberto [2 ]
机构
[1] Univ Estadual Campinas, Dept Math, Campinas, SP, Brazil
[2] Univ Brasilia, Dept Math, Brasilia, DF, Brazil
基金
日本学术振兴会;
关键词
Lie-point symmetries; Determining equations; Random symmetries; Stochastic differential equations; Ito formula; STOCHASTIC DIFFERENTIAL-EQUATIONS; STRATONOVICH DYNAMICAL-SYSTEMS; CONSERVED QUANTITIES; IT(O)OVER-CAP;
D O I
10.1080/14029251.2014.900984
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of a random symmetry. It consists of taking the action given by a deterministic flow that maintains the solutions of a given differential equation invariant and replacing it with a stochastic flow. This generates a random action, which we call a random symmetry.
引用
收藏
页码:149 / 165
页数:17
相关论文
共 50 条
  • [21] Variational principles for ideal MHD of steady incompressible flows via Lie-point symmetries with application to the magnetic structures of bipolar sunspots
    S. M. Moawad
    The European Physical Journal Plus, 135
  • [22] Heat polynomials and Lie point symmetries
    Leach, P. G. L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (01) : 288 - 297
  • [23] C∞-symmetries and reduction of equations without lie point symmetries
    Muriel, C
    Romero, JL
    JOURNAL OF LIE THEORY, 2003, 13 (01) : 167 - 188
  • [24] Lie point symmetries of difference equations and lattices
    Levi, D
    Tremblay, S
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (47): : 8507 - 8523
  • [25] On differential equations characterized by their Lie point symmetries
    Manno, Gianni
    Oliveri, Francesco
    Vitolo, Raffaele
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (02) : 767 - 786
  • [26] Lie point symmetries for reduced Ermakov systems
    Haas, F
    Goedert, J
    PHYSICS LETTERS A, 2004, 332 (1-2) : 25 - 34
  • [27] How to obtain Lie point symmetries of PDEs
    Kadhim, Sajid Mohammad
    Mohammad, Mayada Gassab
    Jassim, Hassan Kamil
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 22 (04): : 306 - 324
  • [28] POINCARE NORMAL FORMS AND LIE POINT SYMMETRIES
    CICOGNA, G
    GAETA, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (02): : 461 - 476
  • [29] Riemann's equation and Lie point symmetries
    Flessas, GP
    Leach, PGL
    PHYSICA SCRIPTA, 2006, 73 (04) : 377 - 383
  • [30] Random Lie symmetries of Ito stochastic differential equations
    Kozlov, Roman
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (30)