Magnoflorine promotes Huh-7 cell apoptosis and autophagy by regulating PI3K/Akt/mTOR pathway

被引:0
|
作者
Xu, Jifan [1 ]
Du, Bo [1 ]
Liu, Yunfeng [1 ]
Tao, Chonglin [2 ]
机构
[1] Peoples Hosp Chongqing Kaizhou, Dept Hepatobiliary Surg, Chongqing, Peoples R China
[2] Wenzhou Med Univ, Dept Hepatopancreatobiliary Surg, Affiliated Hosp 1, Baixiang St, Wenzhou 325000, Zhejiang, Peoples R China
关键词
apoptosis; autophagy; hepatoma; Huh-7; cells; magnoflorine (MGN); proliferation;
D O I
10.15586/qas.v14i1.1013
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Hepatoma is a malignant tumor with high rates of heterogeneity, metastasis, and mortality. Currently, there is no effective treatment available for hepatoma. In order to treat advanced hepatoma in a better manner, new and more effective therapeutic targets still need to be developed. Magnoflorine (MGN) is a quaternary ammonium alkaloid with a variety of therapeutic properties. MGN inhibited the proliferation of lung cancer, breast cancer, glioma, and rhabdomyosarcoma cells, induced apoptosis, and blocked cell cycle. However, its possible effects on the progression of hepatoma are still indefinite. In this study, the effects of MGN on the progression of hepatoma in vitro and the underlying mechanisms were determined. MGN suppressed the proliferation, induced the autophagy, and stimulated the apoptosis of human hepatoma Huh-7 cells. Mechanically, MGN could regulate PI3K/AKT/mTOR pathway, which therefore affects the progression of hepatoma in vitro. Taken together, MGN affected Huh-7 cell proliferation, autophagy, and apoptosis, and might act as a promising therapeutic drug for treating hepatoma.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 50 条
  • [31] Dihydromyricetin Alleviates H9C2 Cell Apoptosis and Autophagy by Regulating CircHIPK3 Expression and PI3K/AKT/mTOR Pathway
    ZHANG Zhi-ying
    LIU Chao
    WANG Peng-xiang
    HAN Yi-wei
    ZHANG Yi-wen
    HAO Mei-li
    SONG Zi-xu
    ZHANG Xiao-ying
    Chinese Journal of Integrative Medicine , 2023, (05) : 434 - 440
  • [32] PI3K/AKT/mTOR pathway in angiogenesis
    Karar, Jayashree
    Maity, Amit
    FRONTIERS IN MOLECULAR NEUROSCIENCE, 2011, 4
  • [33] The PI3K/Akt/mTOR signaling pathway
    Dennis, P. A.
    ANNALS OF ONCOLOGY, 2011, 22 : 19 - 19
  • [34] Overview of the PI3K/Akt/mTOR pathway
    Dennis, P. A.
    ANNALS OF ONCOLOGY, 2008, 19 : 21 - 21
  • [35] The PI3K/AKT/mTOR interactive pathway
    Ersahin, Tulin
    Tuncbag, Nurcan
    Cetin-Atalay, Rengul
    MOLECULAR BIOSYSTEMS, 2015, 11 (07) : 1946 - 1954
  • [36] Ursolic Acid-Induced Apoptosis via Regulation of the PI3K/Akt and MAPK Signaling Pathways in Huh-7 Cells
    Lee, Kwong-Chiu
    Chen, Yao-Li
    Lin, Ping-Yi
    Chuang, Wan-Ling
    MOLECULES, 2018, 23 (08)
  • [37] β-ecdysterone alleviates osteoarthritis by activating autophagy in chondrocytes through regulating PI3K/AKT/mTOR signal pathway
    Tang, Yanghua
    Mo, Yafeng
    Xin, Dawei
    Zeng, Linru
    Yue, Zhenshuang
    Xu, Canda
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2020, 12 (11): : 7174 - 7186
  • [38] Pectolinarigenin Induced Cell Cycle Arrest, Autophagy, and Apoptosis in Gastric Cancer Cell via PI3K/AKT/mTOR Signaling Pathway
    Lee, Ho Jeong
    Saralamma, Venu Venkatarame Gowda
    Kim, Seong Min
    Ha, Sang Eun
    Raha, Suchismita
    Lee, Won Sup
    Kim, Eun Hee
    Lee, Sang Joon
    Heo, Jeong Doo
    Kim, Gon Sup
    NUTRIENTS, 2018, 10 (08)
  • [39] Combination effect of curcumin with docetaxel on the PI3K/AKT/mTOR pathway to induce autophagy and apoptosis in esophageal squamous cell carcinoma
    Deng, Lian
    Wu, Xiaoran
    Zhu, Xiongjie
    Yu, Zhongjian
    Liu, Zhile
    Wang, Jinting
    Zheng, Yanfang
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2021, 13 (01): : 57 - 72
  • [40] Ginsenoside Rg5 induces NSCLC cell apoptosis and autophagy through PI3K/Akt/mTOR signaling pathway
    Zhang, Caidie
    Jin, Yan
    HUMAN & EXPERIMENTAL TOXICOLOGY, 2024, 43