A Preliminary Study on Performance of Saccharomyces cerevisiae no DY 7221 Immobilized Using Grafted Bioflocculant in Bioethanol Production

被引:0
|
作者
Suci, Windhu Griyasti [1 ]
Margono [2 ]
Kaavessina, Mujtahid [2 ]
机构
[1] Univ Sebelas Maret, Fac Engn, Chem Engn Postgrad Studies, Surakarta 57126, Indonesia
[2] Univ Sebelas Maret, Fac Engn, Dept Chem Engn, Surakarta 57126, Indonesia
关键词
ETHANOL-PRODUCTION; CELLS; FERMENTATION;
D O I
10.1063/1.5024067
中图分类号
O59 [应用物理学];
学科分类号
摘要
Bioethanol has been well acknowledged to be developed as a biofuel and can be derived from renewable resources. Currently, the utilization of bioethanol as a fuel is more expensive than that of gasoline due to the high production cost. Researchers from industrial and academia have been doing some efforts to reduce it, namely: energy efficiency, exploring many potential renewable resources, increasing fermentation productivity, etc. We propose a novel immobilized Saccharomyces cerevisiae trapped in grafted bioflocculant. The flocculant was developed from polyacrylamide chains grafted into modified starches. This research aims to preliminary performance study of S. cerevisiae immobilized using our new developed method. The bioflocculant solution with the various concentration of 1%, 2%, and 2.5% v/v was dropped into 90 ml of developed inoculum to get flocs which would be used as a starter in fermentation process. The fermentation process was carried out in a shaken flask at 30 degrees C and 150 rpm for 72 hours. The best result was obtained in the sample of 2.5% bioflocculant fraction, i.e. bioethanol 9.25% and enhanced productivity 3.6 times of free cell. These results indicate that flocculation method is a way of immobilizing yeast that needs to be further investigated.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Improved Bioethanol Production Using Fusants of Saccharomyces cerevisiae and Xylose-Fermenting Yeasts
    Kumari, Rajni
    Pramanik, K.
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2012, 167 (04) : 873 - 884
  • [22] Optimization of bioethanol production from soybean molasses using different strains of Saccharomyces cerevisiae
    Roncevic, Zorana
    Bajic, Bojana
    Dodic, Sinisa
    Grahovac, Jovana
    Pajovic-Scepanovic, Radmila
    Dodic, Jelena
    HEMIJSKA INDUSTRIJA, 2019, 73 (01) : 1 - 12
  • [23] Processing watermelon waste using Saccharomyces cerevisiae yeast and the fermentation method for bioethanol production
    Jahanbakhshi, Ahmad
    Salehi, Rouhollah
    JOURNAL OF FOOD PROCESS ENGINEERING, 2019, 42 (07)
  • [24] Production of Bioethanol from Sugarcane Juice, Molasses and Paddy Straw using Saccharomyces cerevisiae
    Nehra, Kaur Singh
    Jangra, Mukesh R.
    Sharma, Pooja
    Aggarwal, Minakshi
    Mishra, Pooja
    Bharti, Rama
    Sachdeva, Hitesh
    Poonia, Pardeep
    Jangra, Sumit
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2021, 14 (02): : 581 - 586
  • [25] Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose
    Trung Hau Nguyen
    Chae Hun Ra
    InYung Sunwoo
    Gwi-Taek Jeong
    Sung-Koo Kim
    Bioprocess and Biosystems Engineering, 2017, 40 : 529 - 536
  • [26] Media Evaluation of Bioethanol Production from Cassava Starch Hydrolysate Using Saccharomyces cerevisiae
    Betiku, E.
    Alade, O. S.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2014, 36 (18) : 1990 - 1998
  • [27] Production of bioethanol from plantain and yam peels using Aspergillus niger and Saccharomyces cerevisiae
    MacDonald Kitson-Hytey
    Bernard Fei-Baffoe
    Lyndon N. A. Sackey
    Kodwo Miezah
    Biomass Conversion and Biorefinery, 2024, 14 : 9087 - 9095
  • [28] Bioethanol production from corn stalk juice using Saccharomyces cerevisiae TISTR 5020
    Bautista, Katherine
    Unpaprom, Yuwalee
    Ramaraj, Ramesprabu
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2019, 41 (13) : 1615 - 1621
  • [29] Bioflavour production from orange peel hydrolysate using immobilized Saccharomyces cerevisiae
    Lalou, Sofia
    Mantzouridou, Fani
    Paraskevopoulou, Adamantini
    Bugarski, Branko
    Levic, Steva
    Nedovic, Victor
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (21) : 9397 - 9407
  • [30] L-MALIC ACID PRODUCTION USING IMMOBILIZED SACCHAROMYCES-CEREVISIAE
    FIGUEIREDO, ZMB
    CARVALHO, LB
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1991, 30 (02) : 217 - 224