Time-frequency domain SNR estimation and its application in seismic data processing

被引:23
|
作者
Zhao, Yan [1 ,2 ]
Liu, Yang [1 ,2 ]
Li, Xuxuan [3 ]
Jiang, Nansen [3 ]
机构
[1] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing, Peoples R China
[2] China Univ Petr, CNPC Key Lab Geophys Prospecting, Beijing, Peoples R China
[3] CNOOC, Petr Res Ctr, Beijing, Peoples R China
关键词
Time-frequency domain signal-to-noise ratio; Seismic data processing; Inverse Q filtering; High frequency noise attenuation; TO-NOISE RATIO; FOURIER-TRANSFORM; S-TRANSFORM; SIGNAL; ENHANCEMENT; SEISMOGRAMS; ATTENUATION; DISPERSION;
D O I
10.1016/j.jappgeo.2014.05.002
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Based on an approach estimating frequency domain signal-to-noise ratio (FSNR), we propose a method to evaluate time-frequency domain signal-to-noise ratio (TFSNR). This method adopts short-time Fourier transform (STFT) to estimate instantaneous power spectrum of signal and noise, and thus uses their ratio to compute TFSNR. Unlike FSNR describing the variation of SNR with frequency only, TFSNR depicts the variation of SNR with time and frequency, and thus better handles non-stationary seismic data. By considering TFSNR, we develop methods to improve the effects of inverse Q filtering and high frequency noise attenuation in seismic data processing. Inverse Q filtering considering TFSNR can better solve the problem of amplitude amplification of noise. The high frequency noise attenuation method considering TFSNR, different from other de-noising methods, distinguishes and suppresses noise using an explicit criterion. Examples of synthetic and real seismic data illustrate the correctness and effectiveness of the proposed methods. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 50 条
  • [41] Seismic resolution enhancement using scale transform in the time-frequency domain
    Alaei, Niloofar
    Kahoo, Amin Roshandel
    Rouhani, Abolghasem Kamkar
    Soleimani, Mehrdad
    GEOPHYSICS, 2018, 83 (06) : V305 - V314
  • [42] Time-frequency electromagnetic(TFEM) method: Data acquisition system and its application
    He Z.
    Chen Z.
    Ren W.
    Pang H.
    Tian Z.
    Shen Y.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2020, 55 (05): : 1131 - 1138
  • [43] Time-Frequency Analysis of Seismic Data Using Synchrosqueezing Transform
    Wang, Ping
    Gao, Jinghuai
    Wang, Zhiguo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (12) : 2042 - 2044
  • [44] Seismic data denoising based on mixed time-frequency methods
    Han-Peng Cai
    Zhen-Hua He
    De-Ji Huang
    Applied Geophysics, 2011, 8 : 319 - 327
  • [45] Seismic data analysis by adaptive sparse time-frequency decomposition
    Sattari, Hamid
    Gholami, Ali
    Siahkoohi, Hamid R.
    GEOPHYSICS, 2013, 78 (05) : V207 - V217
  • [46] Seismic data denoising based on mixed time-frequency methods
    Cai Han-Peng
    He Zhen-Hua
    Huang De-Ji
    APPLIED GEOPHYSICS, 2011, 8 (04) : 319 - 327
  • [47] TIME-FREQUENCY ANALYSIS OF SEISMIC DATA BASED ON BASIS PURSUIT
    Li, Yongqing
    Wang, Jun
    2014 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2014, : 175 - 179
  • [48] Time-frequency analysis of seismic data using local attributes
    Liu, Guochang
    Fomel, Sergey
    Chen, Xiaohong
    GEOPHYSICS, 2011, 76 (06) : P23 - P34
  • [49] Seismic data analysis by adaptive sparse time-frequency decomposition
    Sattari, H. (h_sattari@ut.ac.ir), 1600, Society of Exploration Geophysicists (78):
  • [50] Time-Frequency Source Estimation from MEG Data
    Greenblatt, R. E.
    Ossadtchi, A.
    Kurelowech, L.
    Lawson, D.
    Criado, J.
    17TH INTERNATIONAL CONFERENCE ON BIOMAGNETISM ADVANCES IN BIOMAGNETISM - BIOMAG2010, 2010, 28 : 136 - +