Time-frequency domain SNR estimation and its application in seismic data processing

被引:23
|
作者
Zhao, Yan [1 ,2 ]
Liu, Yang [1 ,2 ]
Li, Xuxuan [3 ]
Jiang, Nansen [3 ]
机构
[1] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing, Peoples R China
[2] China Univ Petr, CNPC Key Lab Geophys Prospecting, Beijing, Peoples R China
[3] CNOOC, Petr Res Ctr, Beijing, Peoples R China
关键词
Time-frequency domain signal-to-noise ratio; Seismic data processing; Inverse Q filtering; High frequency noise attenuation; TO-NOISE RATIO; FOURIER-TRANSFORM; S-TRANSFORM; SIGNAL; ENHANCEMENT; SEISMOGRAMS; ATTENUATION; DISPERSION;
D O I
10.1016/j.jappgeo.2014.05.002
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Based on an approach estimating frequency domain signal-to-noise ratio (FSNR), we propose a method to evaluate time-frequency domain signal-to-noise ratio (TFSNR). This method adopts short-time Fourier transform (STFT) to estimate instantaneous power spectrum of signal and noise, and thus uses their ratio to compute TFSNR. Unlike FSNR describing the variation of SNR with frequency only, TFSNR depicts the variation of SNR with time and frequency, and thus better handles non-stationary seismic data. By considering TFSNR, we develop methods to improve the effects of inverse Q filtering and high frequency noise attenuation in seismic data processing. Inverse Q filtering considering TFSNR can better solve the problem of amplitude amplification of noise. The high frequency noise attenuation method considering TFSNR, different from other de-noising methods, distinguishes and suppresses noise using an explicit criterion. Examples of synthetic and real seismic data illustrate the correctness and effectiveness of the proposed methods. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 50 条
  • [1] Application of Seismic Data Stacking in Time-Frequency Domain
    Li, Qiang
    Gao, Jinghuai
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (09) : 1484 - 1488
  • [2] Domain adaptation-based sparse time-frequency analysis and its application on seismic attenuation estimation
    Liu, Naihao
    Zhang, Yuxin
    Yang, Yang
    Wang, Zhiguo
    Liu, Rongchang
    Gao, Jinghuai
    GEOPHYSICS, 2024, 89 (03) : B187 - B198
  • [3] Application of sparse time-frequency decomposition to seismic data
    Wang Xiong-Wen
    Wang Hua-Zhong
    APPLIED GEOPHYSICS, 2014, 11 (04) : 447 - 458
  • [4] Application of sparse time-frequency decomposition to seismic data
    Xiong-Wen Wang
    Hua-Zhong Wang
    Applied Geophysics, 2014, 11 : 447 - 458
  • [5] Seismic data time-frequency domain filter with Wavelet Transform
    Luo, TY
    Ming, LJ
    Cheng, GF
    Zhang, FC
    Zhang, LM
    1997 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT PROCESSING SYSTEMS, VOLS 1 & 2, 1997, : 1223 - 1226
  • [6] Time-Domain Processing of Frequency-Domain Data and Its Application
    Chin, Wen-Long
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2012, E95B (04) : 1406 - 1409
  • [7] A SNR Enhancement Method for Desert Seismic Data: Simplified Low-Rank Selection in Time-Frequency Decomposition Domain
    Wu, Ning
    Li, Yue
    Yan, Jie
    Ma, Haitao
    PURE AND APPLIED GEOPHYSICS, 2021, 178 (08) : 2905 - 2916
  • [8] SEISMIC DATA-PROCESSING - FREQUENCY-DOMAIN OR TIME DOMAIN
    MENDEL, JM
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1978, 16 (02): : 78 - 79
  • [9] Applications of Time-Frequency Domain Polarization Filtering to InSight Seismic Data
    Brinkman, N.
    Sollberger, D.
    Schmelzbach, C.
    Stahler, S. C.
    Robertsson, J.
    EARTH AND SPACE SCIENCE, 2023, 10 (11)
  • [10] Q-factor estimation from surface seismic data in the time-frequency domain: A comparative analysis
    Xue, Ya-Juan
    Cao, Jun-Xing
    Wang, Xing-Jian
    Du, Hao-Kun
    Chen, Wei
    You, Jia-Chun
    Tan, Feng
    GEOPHYSICS, 2022, 87 (04) : V261 - V277