Combinatorics of the discrete plane and tilings - Forward

被引:0
|
作者
Vuillon, L [1 ]
机构
[1] Univ Savoie, Math Lab, CNRS, UMR 5127, F-73376 Le Bourget Du Lac, France
关键词
D O I
10.1016/j.tcs.2004.02.024
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:1 / 1
页数:1
相关论文
共 50 条
  • [41] Combinatorics of Intervals in the Plane I: Trapezoids
    Daniel Di Benedetto
    József Solymosi
    Ethan Patrick White
    Discrete & Computational Geometry, 2023, 69 : 232 - 249
  • [42] The combinatorics of discrete self-similarity
    Konvalina, J
    ADVANCES IN APPLIED MATHEMATICS, 1997, 19 (03) : 415 - 428
  • [43] Planar Rosa: a family of quasiperiodic substitution discrete plane tilings with 2n-fold rotational symmetry
    Kari, Jarkko
    Lutfalla, Victor H.
    NATURAL COMPUTING, 2023, 22 (03) : 539 - 561
  • [44] Planar Rosa: a family of quasiperiodic substitution discrete plane tilings with 2n-fold rotational symmetry
    Jarkko Kari
    Victor H. Lutfalla
    Natural Computing, 2023, 22 : 539 - 561
  • [45] ORDER VERSUS SYMMETRY IN PINWHEEL TILINGS OF THE PLANE
    MARDER, M
    PHYSICAL REVIEW B, 1993, 48 (18): : 13971 - 13973
  • [46] Collisions and their catenations: Ultimately periodic tilings of the plane
    Ollinger, Nicolas
    Richard, Gaetan
    FIFTH IFIP INTERNATIONAL CONFERENCE ON THEORETICAL COMPUTER SCIENCE - TCS 2008, 2008, 273 : 229 - 240
  • [47] Aperiodic tilings of the hyperbolic plane by convex polygons
    Margulis, GA
    Mozes, S
    ISRAEL JOURNAL OF MATHEMATICS, 1998, 107 (1) : 319 - 325
  • [48] The tilings {p,q} of the hyperbolic plane are combinatoric
    Margenstern, M
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL V, PROCEEDINGS: COMPUTER SCIENCE AND ENGINEERING: I, 2003, : 42 - 46
  • [49] Perfect precise colorings of plane regular tilings
    Santos, Rovin
    Felix, Rene
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS, 2011, 226 (09): : 726 - 730
  • [50] Automatic counting of tilings of skinny plane regions
    Ekhad, Shalosh B.
    Zeilberger, Doron
    SURVEYS IN COMBINATORICS 2013, 2013, 409 : 363 - 378