THz-frequency magnon-phonon-polaritons in the collective strong-coupling regime

被引:43
|
作者
Sivarajah, Prasahnt [1 ]
Steinbacher, Andreas [1 ]
Dastrup, Blake [1 ]
Lu, Jian [1 ]
Xiang, Maolin [2 ,3 ]
Ren, Wei [2 ,3 ]
Kamba, Stanislav [4 ]
Cao, Shixun [2 ,3 ]
Nelson, Keith A. [1 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] Shanghai Univ, Dept Phys, Int Ctr Quantum & Mol Struct, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
[4] Acad Sci Czech Republ, Inst Phys, Na Slovance 2, Prague 18221 8, Czech Republic
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
SINGLE QUANTUM-DOT; TEMPERATURE-DEPENDENCE; CAVITY; LINBO3; FIELD; PHOTONS; MODES; ATOMS; SUBWAVELENGTH; SCATTERING;
D O I
10.1063/1.5083849
中图分类号
O59 [应用物理学];
学科分类号
摘要
Strong coupling between light and matter occurs when the two interact such that new hybrid modes, the so-called polaritons, are formed. Here, we report on the strong coupling of both the electric and the magnetic degrees of freedom to an ultrafast terahertz (THz) frequency electromagnetic wave. In our system, optical phonons in a slab of ferroelectric lithium niobate are strongly coupled to a THz electric field to form phonon-polaritons, which are simultaneously strongly coupled to magnons in an adjacent slab of canted antiferromagnetic erbium orthoferrite via the magnetic-field component of the same THz pulse. We juxtapose experimental results of bare slabs consisting of the two materials with a photonic crystal cavity, consisting of a two-dimensional array of air holes cut into the hybrid slab. In both cases, the strong coupling leads to the formation of new magnon-phonon-polariton modes, which we experimentally observe in the time domain as a normal-mode beating and which corresponds in the frequency domain to an avoided crossing. Our simple yet versatile waveguide platform provides a promising avenue through which to explore ultrafast THz spintronics, quantum electrodynamics, sensing, and spectroscopic applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Electronic Maxwell demon in the coherent strong-coupling regime
    Schaller, Gernot
    Cerrillo, Javier
    Engelhardt, Georg
    Strasberg, Philipp
    PHYSICAL REVIEW B, 2018, 97 (19)
  • [32] Insulating state of granular superconductors in a strong-coupling regime
    Beloborodov, I. S.
    Fominov, Ya. V.
    Lopatin, A. V.
    Vinokur, V. M.
    PHYSICAL REVIEW B, 2006, 74 (01)
  • [33] Thermodynamic properties of the Dicke model in the strong-coupling regime
    Liberti, G
    Zaffino, RL
    EUROPEAN PHYSICAL JOURNAL B, 2005, 44 (04): : 535 - 541
  • [34] Fate of photon blockade in the deep strong-coupling regime
    Le Boite, Alexandre
    Hwang, Myung-Joong
    Nha, Hyunchul
    Plenio, Martin B.
    PHYSICAL REVIEW A, 2016, 94 (03)
  • [35] Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime
    María Barra-Burillo
    Unai Muniain
    Sara Catalano
    Marta Autore
    Fèlix Casanova
    Luis E. Hueso
    Javier Aizpurua
    Ruben Esteban
    Rainer Hillenbrand
    Nature Communications, 12
  • [36] The mean energy for the anharmonic oscillator in the strong-coupling regime
    Svaiter, N. F.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 368 (01) : 111 - 118
  • [37] CORNWALL-NORTON MODEL IN THE STRONG-COUPLING REGIME
    NATALE, AA
    PHYSICAL REVIEW D, 1991, 43 (10) : 3569 - 3572
  • [38] Thermodynamic properties of the Dicke model in the strong-coupling regime
    G. Liberti
    R. L. Zaffino
    The European Physical Journal B - Condensed Matter and Complex Systems, 2005, 44 : 535 - 541
  • [39] Dissipative dynamics of quantum correlations in the strong-coupling regime
    Altintas, Ferdi
    Eryigit, Resul
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [40] Intersubband electroluminescent devices operating in the strong-coupling regime
    Jouy, P.
    Vasanelli, A.
    Todorov, Y.
    Sapienza, L.
    Colombelli, R.
    Gennser, U.
    Sirtori, C.
    PHYSICAL REVIEW B, 2010, 82 (04):