Multilinear analysis on metric spaces

被引:47
|
作者
Grafakos, Loukas [2 ]
Liu, Liguang [3 ]
Maldonado, Diego [4 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Renmin Univ China, Sch Informat, Dept Math, Beijing 100872, Peoples R China
[4] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
关键词
space of homogeneous type; multilinear Calderon Zygmund operator; multilinear weighted estimate; paraproduct; bilinear T1-theorem; quadratic T1 type theorem; bilinear multiplier; Besov space; Triebel-Lizorkin space; WEIGHTED NORM INEQUALITIES; EUCLIDEAN N-SPACE; SINGULAR INTEGRAL-OPERATORS; TRIEBEL-LIZORKIN SPACES; HARDY-SPACES; MAXIMAL FUNCTIONS; LIPSCHITZ-SPACES; BILINEAR OPERATORS; NONSMOOTH KERNELS; HOMOGENEOUS TYPE;
D O I
10.4064/dm497-0-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The multilinear Calderon-Zygmund theory is developed in the setting of RD-spaces which are spaces of homogeneous type equipped with measures satisfying a reverse doubling condition. The multiple-weight multilinear Calderon-Zygmund theory in this context is also developed in this work. The bilinear T1-theorems for Besov and Triebel-Lizorkin spaces" in the full range of exponents are among the main results obtained. Multi linear vector-valued T1 type theorems on Lebesgue spaces, Besov spaces, and Triebel-Lizorkin spaces are also proved. Applications include the boundedness of paraproducts and bilinear multiplier operators on products of Besov and Triebel-Lizorkin spaces.
引用
收藏
页码:1 / 121
相关论文
共 50 条
  • [31] Weighted norm inequalities for multilinear Calderon-Zygmund operators on non-homogeneous metric measure spaces
    Hu, Guoen
    Meng, Yan
    Yang, Dachun
    FORUM MATHEMATICUM, 2014, 26 (05) : 1289 - 1322
  • [32] On some results of analysis for fuzzy metric spaces
    George, A
    Veeramani, P
    FUZZY SETS AND SYSTEMS, 1997, 90 (03) : 365 - 368
  • [33] Multilinear Commutators of θ-Type Calderón-Zygmund Operators on Non-Homogeneous Metric Measure Spaces
    Rulong Xie
    Lisheng Shu
    Hailian Wang
    AnalysisinTheoryandApplications, 2017, 33 (02) : 178 - 196
  • [34] FOURIER-ANALYSIS ON LINEAR METRIC SPACES
    KUELBS, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 181 (JUL) : 293 - 311
  • [35] ANALYSIS ON METRIC SPACES AND APPLICATIONS TO PDE'S
    Di Fazio, G.
    Gutierrez, C. E.
    Lanconelli, E.
    MATEMATICHE, 2005, 60 (02): : 461 - 468
  • [36] On partial metric spaces and partial cone metric spaces
    Moshokoa, Seithuti
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (06): : 1069 - 1075
  • [37] Ultrametricity and Metric Betweenness in Tangent Spaces to Metric Spaces
    Dovgoshey, Oleksiy
    Dordovskyi, Dmytro
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2010, 2 (02) : 100 - 113
  • [38] The Metric Dimension of Metric Spaces
    Bau, Sheng
    Beardon, Alan F.
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2013, 13 (02) : 295 - 305
  • [39] The Metric Dimension of Metric Spaces
    Sheng Bau
    Alan F. Beardon
    Computational Methods and Function Theory, 2013, 13 : 295 - 305
  • [40] On metric regularity in metric spaces
    Gautier, S
    Pichard, K
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 67 (02) : 317 - 328