Wrapping of nanoparticles by membranes

被引:180
|
作者
Bahrami, Arnir H. [1 ]
Raatz, Michael [1 ]
Agudo-Canalejo, Jaime [1 ]
Michel, Raphael [2 ]
Curtis, Emily M. [3 ]
Hall, Carol K. [3 ]
Gradzielski, Michael [2 ]
Lipowsky, Reinhard [1 ]
Weikl, Thomas R. [1 ]
机构
[1] Max Planck Inst Colloids & Interfaces, Dept Theory & Biosyst, D-14424 Potsdam, Germany
[2] Tech Univ Berlin, Inst Chem, Stranski Lab Phys & Theoret Chem, D-10623 Berlin, Germany
[3] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Nanoparticles; Membranes; Bending energy; RECEPTOR-MEDIATED ENDOCYTOSIS; SILICA NANOPARTICLES; FLUID MEMBRANES; CELLULAR UPTAKE; LIPID-BILAYERS; DRUG-DELIVERY; INTERNALIZATION; PARTICLES; VESICLES; ADHESION;
D O I
10.1016/j.cis.2014.02.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
How nanoparticles interact with biomembranes is central for understanding their bioactivity. Biomembranes wrap around-nanoparticles if the adhesive interaction between the nanoparticles and membranes is sufficiently strong to compensate for the cost of membrane bending. In this article, we review recent results from theory and simulations that provide new insights on the interplay of bending and adhesion energies during the wrapping of nanoparticles by membranes. These results indicate that the interplay of bending and adhesion during wrapping is strongly affected by the interaction range of the particle-membrane adhesion potential, by the shape of the nanoparticles, and by shape changes of membrane vesicles during wrapping. The interaction range of the particle-membrane adhesion potential is crucial both for the wrapping process of single nanoparticles and the cooperative wrapping of nanoparticles by membrane tubules. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:214 / 224
页数:11
相关论文
共 50 条
  • [21] A Complete Green Protocol: Wrapping of Multiwall Carbon Nanotubes with Silver Nanoparticles
    Kurva, Samba Sivudu
    Kathi, John
    Rhee, Kyong-Yop
    Park, Soo Jin
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (05) : 4463 - 4465
  • [22] Wrapping effect and wrapping function
    Reliable Computing, 1998, 4 (04): : 311 - 330
  • [23] Size Limit and Energy Analysis of Nanoparticles during Wrapping Process by Membrane
    Meng, Xinpei
    Li, Xinlei
    NANOMATERIALS, 2018, 8 (11):
  • [24] Quiver matrix mechanics for IIB string theory (I): wrapping membranes and emergent dimension
    Dai, J
    Wu, YS
    NUCLEAR PHYSICS B, 2004, 684 (1-2) : 75 - 99
  • [25] Modelling of compact Folding/Wrapping of flat circular membranes (folding patterns of equiangular spirals)
    Nojima, T
    JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 2003, 46 (04) : 1547 - 1553
  • [26] Graphene Oxide Wrapping on Squaraine-Loaded Mesoporous Silica Nanoparticles for Bioimaging
    Sreejith, Sivaramapanicker
    Ma, Xing
    Zhao, Yanli
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (42) : 17346 - 17349
  • [27] Silicone membranes with silica nanoparticles
    Univ of Campinas, Campinas, Brazil
    J Mater Sci Lett, 13 (1139-1141):
  • [28] Nanoparticles at model cellular membranes
    Cardenas, Marite
    Lind, Tania
    Jagalski, Vivien
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [29] Tear of lipid membranes by nanoparticles
    Er-Rafik, Meriem
    Ferji, Khalid
    Combet, Jerome
    Sandre, Olivier
    Lecommandoux, Sebastien
    Schmutz, Marc
    Le Meins, Jean-Francois
    Marques, Carlos M.
    SOFT MATTER, 2022, 18 (17) : 3318 - 3322
  • [30] Strategy toward fluorinated polyhedral oligomeric silsesquioxane wrapping nanoparticles for superomniphobic surfaces
    Chen, Boxu
    Yang, Mingjin
    Lin, Xilin
    Liu, Wenfeng
    Yuan, Hai
    Liao, Jingwen
    CHEMICAL COMMUNICATIONS, 2022, 58 (26) : 4263 - 4266