A Proposal for Wide-Bandgap Intermediate-Band Solar Cells Using Type-II InP/InGaP Quantum Dots

被引:0
|
作者
Tayagaki, Takeshi [1 ]
Nagato, Yuki [1 ,2 ]
Okano, Yoshinobu [2 ]
Sugaya, Takeyoshi [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan
[2] Tokyo City Univ, Tokyo, Japan
来源
2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC) | 2016年
关键词
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We propose the use of type-II InP quantum dots (QDs) in wide-bandgap InGaP host for the wide-bandgap intermediate-band solar cells (IBSCs). We demonstrate that the type-II InP QDs in the InGaP host exhibits carrier lifetimes greater than 30 ns. In addition, we find that while the valence band offset for holes is negligible, a large confinement potential for electrons (i.e., similar to 0.35 eV) is formed in these type-II InP QDs. This indicates that type-II InP QDs can simultaneously suppress thermal carrier escape while enhancing the second optical excitation in the InGaP host, thus leading to a highly efficient IBSC.
引用
收藏
页码:160 / 162
页数:3
相关论文
共 50 条
  • [41] Computational Design of the Intermediate-Band Solar Cells Based on the Quantum Dot Superlattices
    Shao, Qinghui
    Balandin, Alexander A.
    Fedoseyev, Alexander I.
    Turowski, Marek
    NANOSCALE PHOTONIC AND CELL TECHNOLOGIES FOR PHOTOVOLTAICS, 2008, 7047
  • [42] Single intermediate-band solar cells of InGaN/InN quantum dot supracrystals
    Zhang, Qiubo
    Wei, Wensheng
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 113 (01): : 75 - 82
  • [43] Single intermediate-band solar cells of InGaN/InN quantum dot supracrystals
    Qiubo Zhang
    Wensheng Wei
    Applied Physics A, 2013, 113 : 75 - 82
  • [44] Multi-stacked GaSb/GaAs type-II quantum nanostructures for application to intermediate band solar cells
    Shoji, Yasushi
    Tamaki, Ryo
    Okada, Yoshitaka
    AIP ADVANCES, 2017, 7 (06):
  • [45] Modeling of type-II quantum dot intermediate band solar cells accounting for thermal and optical intersubband transitions
    Khalili, Arastoo
    Cappelluti, Federica
    2018 18TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD 2018), 2018, : 139 - 140
  • [46] Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells
    Mendes, Manuel J.
    Hernandez, Estela
    Lopez, Esther
    Garcia-Linares, Pablo
    Ramiro, Inigo
    Artacho, Irene
    Antolin, Elisa
    Tobias, Ignacio
    Marti, Antonio
    Luque, Antonio
    NANOTECHNOLOGY, 2013, 24 (34)
  • [47] InAs quantum dots on GaAs for intermediate band solar cells
    Micha, Daniel N.
    Weiner, Eleonora
    Jakomin, Roberto
    Kawabata, Rudy
    Mourao, Renato
    Pires, Mauricio P.
    Souza, Patricia L.
    2015 30TH SYMPOSIUM ON MICROELECTRONICS TECHNOLOGY AND DEVICES (SBMICRO), 2015,
  • [48] Microstructural characterization of quantum dots with type-II band alignments
    Sarney, W. L.
    Little, J. W.
    Svensson, S. P.
    SOLID-STATE ELECTRONICS, 2006, 50 (06) : 1124 - 1127
  • [49] Modeling and implementation of tandem polymer solar cells using wide-bandgap front cells
    Ko, Seo-Jin
    Choi, Hyosung
    Quoc Viet Hoang
    Song, Chang Eun
    Morin, Pierre-Olivier
    Heo, Jungwoo
    Leclerc, Mario
    Yoon, Sung Cheol
    Woo, Han Young
    Shin, Won Suk
    Walker, Bright
    Kim, Jin Young
    CARBON ENERGY, 2020, 2 (01) : 131 - 142
  • [50] New strategies for colloidal-quantum-dot-based intermediate-band solar cells
    Califano, Marco
    Skibinsky-Gitlin, Erik S.
    Gomez-Campos, Francisco M.
    Rodriguez-Bolivar, Salvador
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (15):