Towards a Very Large Scale Traffic Simulator for Multi-Agent Reinforcement Learning Testbeds

被引:2
|
作者
Hu, Zijian [1 ]
Zhuge, Chengxiang [2 ]
Ma, Wei [3 ,4 ,5 ]
机构
[1] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Kowloon, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R China
[4] Hong Kong Polytech Univ, Res Inst Sustainable Urban Dev, Hong Kong, Peoples R China
[5] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
MODEL;
D O I
10.1109/ITSC55140.2022.9921887
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Smart traffic control and management become an emerging application for Deep Reinforcement Learning (DRL) to solve traffic congestion problems in urban networks. Different traffic control and management policies can be tested on the traffic simulation. Current DRL-based studies are mainly supported by the microscopic simulation software (e.g., SUMO1), while it is not suitable for city-wide control due to the computational burden and gridlock effect. To the best of our knowledge, there is a lack of studies on the large-scale traffic simulator for DRL testbeds. In view of this, we propose a meso-macro traffic simulator for very large-scale DRL scenarios. The proposed simulator integrates mesoscopic and macroscopic traffic simulation models to improve efficiency and eliminate gridlocks. The mesoscopic link model simulates flow dynamics on roads, and the macroscopic Bathtub model depicts vehicle movement in regions. Moreover, both types of models can be hybridized to accommodate various DRL tasks. The result shows that the developed simulator only takes 46 seconds to finish a 24-hour simulation in a very large city with 2.2 million vehicles, which is much faster than SUMO. In the future, the developed meso-macro traffic simulator could serve as a new environment for very large-scale DRL problems.
引用
收藏
页码:363 / 368
页数:6
相关论文
共 50 条
  • [31] Large-Scale Traffic Signal Control Based on Integration of Adaptive Subgraph Reformulation and Multi-agent Deep Reinforcement Learning
    Gong, Kai
    Sun, Qiwei
    Zhong, Xiaofang
    Zhang, Yanhua
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 751 - 762
  • [32] Adaptive Traffic Signal Control for large-scale scenario with Cooperative Group-based Multi-agent reinforcement learning
    Wang, Tong
    Cao, Jiahua
    Hussain, Azhar
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2021, 125
  • [33] Dynamic traffic signal control using mean field multi-agent reinforcement learning in large scale road-networks
    Hu, Tianfeng
    Hu, Zhiqun
    Lu, Zhaoming
    Wen, Xiangming
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (09) : 1715 - 1728
  • [34] TraCo: Learning Virtual Traffic Coordinator for Cooperation with Multi-Agent Reinforcement Learning
    Liu, Weiwei
    Jing, Wei
    Gao, Lingping
    Guo, Ke
    Xu, Gang
    Liu, Yong
    CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
  • [35] Large-Scale Machine Learning Cluster Scheduling via Multi-Agent Graph Reinforcement Learning
    Zhao, Xiaoyang
    Wu, Chuan
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04): : 4962 - 4974
  • [36] A multi-agent deep reinforcement learning approach for traffic signal coordination
    Hu, Ta-Yin
    Li, Zhuo-Yu
    IET INTELLIGENT TRANSPORT SYSTEMS, 2024, 18 (08) : 1428 - 1444
  • [37] Effective Methods for Reinforcement Learning in Large Multi-Agent Domains
    Riedmiller, Martin
    Withopf, Daniel
    IT-INFORMATION TECHNOLOGY, 2005, 47 (05): : 241 - 249
  • [38] Multi-agent broad reinforcement learning for intelligent traffic light control
    Zhu, Ruijie
    Li, Lulu
    Wu, Shuning
    Lv, Pei
    Li, Yafei
    Xu, Mingliang
    INFORMATION SCIENCES, 2023, 619 : 509 - 525
  • [39] Cooperative Multi-Agent Reinforcement Learning in a Large Stationary Environment
    Zemzem, Wiem
    Tagina, Moncef
    2017 16TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2017), 2017, : 365 - 371
  • [40] Multi-Agent Reinforcement Learning for Traffic Signal Control: A Cooperative Approach
    Kolat, Mate
    Kovari, Balint
    Becsi, Tamas
    Aradi, Szilard
    SUSTAINABILITY, 2023, 15 (04)