Closed site complexes of adenine phosphoribosyltransferase from Giardia lamblia reveal a mechanism of ribosyl migration

被引:37
|
作者
Shi, WX
Sarver, AE
Wang, CC
Tanaka, KSE
Almo, SC
Schramm, VL
机构
[1] Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10461 USA
[2] Univ Calif San Francisco, Dept Pharmaceut Chem, Program Chem & Chem Biol, San Francisco, CA 94143 USA
关键词
D O I
10.1074/jbc.M205596200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The adenine phosphoribosyltransferase (APRTase) from Giardia lamblia was co-crystallized with 9-deazaadenine and sulfate or with 9-deazaadenine and Mg-phosphoribosylpyrophosphate. The complexes were solved and refined to 1.85 and 1.95 Angstrom resolution. Giardia APRTase is a symmetric homodimer with the monomers built around Rossman fold cores, an element common to all known purine phosphoribosyltransferases. The catalytic sites are capped with a small hood domain that is unique to the APRTases. These structures reveal several features relevant to the catalytic function of APRTase: 1) a non-proline cis peptide bond (Glu(61)-Ser(62)) is required to form the pyrophosphate binding site in the APRTase.9dA.MgPRPP complex but is a trans peptide bond in the absence of pyrophosphate group, as observed in the APRTase.9dA.SO4 complex; 2) a catalytic site loop is closed and fully ordered in both complexes, with Glu(100) from the catalytic loop acting as the acid/base for protonation/deprotonation of N-7 of the adenine ring, 3) the pyrophosphoryl charge is neutralized by a single Mg2+ ion and Arg(63), in contrast to the hypoxanthine-guanine phosphoribosyltransferases, which use two Mg2+ ions; and 4) the nearest structural neighbors to APRTases are the orotate phosphoribosyltransferases, suggesting different paths of evolution for adenine relative to other purine PRTases. An overlap comparison of AMP and 9-deazaadenine plus Mg-PRPP at the catalytic sites of APRTases indicated that reaction coordinate motion involves a 2.1-Angstrom excursion of the ribosyl anomeric carbon, whereas the adenine ring and the 5-phosphoryl group remained fixed. G. lamblia APRTase therefore provides another example of nucleophilic displacement by electrophile migration.
引用
收藏
页码:39981 / 39988
页数:8
相关论文
共 33 条