Modified Co-Training With Spectral and Spatial Views for Semisupervised Hyperspectral Image Classification

被引:73
|
作者
Zhang, Xiangrong [1 ]
Song, Qiang [1 ]
Liu, Ruochen [1 ]
Wang, Wenna [1 ]
Jiao, Licheng [1 ]
机构
[1] Xidian Univ, Minist Educ, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Co-training; Gabor wavelet; hyperspectral image classification; sample selection; semisupervised learning; SVM;
D O I
10.1109/JSTARS.2014.2325741
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral images are characterized by limited labeled samples, large number of spectral channels, and existence of noise and redundancy. Supervised hyperspectral image classification is difficult due to the unbalance between the high dimensionality of the data and the limited labeled training samples available in real analysis scenarios. The collection of labeled samples is generally hard, expensive, and time-consuming, whereas unlabeled samples can be obtained much easier. This observation has fostered the idea of adopting semisupervised learning techniques in hyperspectral image classification. In this paper, a semisupervised method based on a modified co-training process with spectral and spatial views is proposed for hyperspectral image classification. The original spectral features and the 2-D Gabor features extracted from spatial domains are adopted as two distinct views for co-training, which considers both the spectral and spatial information. Then, a modified co-training process with a new sample selection scheme is presented, which can effectively improve the co-training performance, especially when there are extremely limited labeled samples available. Experiments carried out on two real hyperspectral images show the superiority of the proposed semisupervised method with the modified co-training process over the corresponding supervised techniques, the semisupervised method with the conventional co-training version, and the semisupervised graph-based method.
引用
收藏
页码:2044 / 2055
页数:12
相关论文
共 50 条
  • [31] Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Xin
    Chen, Yushi
    Lin, Zhouhan
    REMOTE SENSING, 2021, 13 (03) : 1 - 22
  • [32] Spectral-Spatial Constraint Hyperspectral Image Classification
    Ji, Rongrong
    Gao, Yue
    Hong, Richang
    Liu, Qiong
    Tao, Dacheng
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (03): : 1811 - 1824
  • [33] Sparse Representations for the Spectral–Spatial Classification of Hyperspectral Image
    Mohamed Ali Hamdi
    Rafika Ben Salem
    Journal of the Indian Society of Remote Sensing, 2019, 47 : 923 - 929
  • [34] Spatial-Spectral BERT for Hyperspectral Image Classification
    Ashraf, Mahmood
    Zhou, Xichuan
    Vivone, Gemine
    Chen, Lihui
    Chen, Rong
    Majdard, Reza Seifi
    REMOTE SENSING, 2024, 16 (03)
  • [35] Spectral-Spatial Mamba for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    REMOTE SENSING, 2024, 16 (13)
  • [36] Spectral-Spatial Response for Hyperspectral Image Classification
    Wei, Yantao
    Zhou, Yicong
    Li, Hong
    REMOTE SENSING, 2017, 9 (03):
  • [37] Spatial-Spectral Information-Based Semisupervised Classification Algorithm for Hyperspectral Imagery
    Wang, Liguo
    Hao, Siyuan
    Wang, Ying
    Lin, Yun
    Wang, Qunming
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (08) : 3577 - 3585
  • [38] Semisupervised hyperspectral image classification based on generative adversarial networks and spectral angle distance
    Zhan, Ying
    Wang, Yufeng
    Yu, Xianchuan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [39] Semisupervised hyperspectral image classification based on generative adversarial networks and spectral angle distance
    Ying Zhan
    Yufeng Wang
    Xianchuan Yu
    Scientific Reports, 13
  • [40] Sparse Spatio-Spectral LapSVM With Semisupervised Kernel Propagation for Hyperspectral Image Classification
    Yang, Lixia
    Wang, Min
    Yang, Shuyuan
    Zhang, Rui
    Zhang, Pingting
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (05) : 2046 - 2054