On a class of non-linear delay distributed order fractional diffusion equations

被引:50
|
作者
Pimenov, V. G. [1 ,2 ]
Hendy, A. S. [2 ]
De Staelen, R. H. [3 ]
机构
[1] RAS, Inst Math & Mech, Ural Branch, 16 St S Kovalevskoy, Ekaterinburg 620000, Russia
[2] Ural Fed Univ, Inst Math & Comp Sci, Dept Computat Math, Ul Mira 19, Ekaterinburg 620002, Russia
[3] Univ Ghent, Res Grp Numer Anal & Math Modeling NaM2, Dept Math Anal, B-9000 Ghent, Belgium
关键词
Distributed order fractional partial differential equations; Difference scheme; Discrete energy method; Delay partial differential equations; Convergence; Stability; DIFFERENCE-SCHEMES; NUMERICAL-SOLUTION; WAVE EQUATION; MODEL;
D O I
10.1016/j.cam.2016.02.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a numerical scheme for a class of non-linear time delay fractional diffusion equations with distributed order in time. This study covers the unique solvability, convergence and stability of the resulted numerical solution by means of the discrete energy method. The derivation of a linearized difference scheme with convergence order O(tau + (Delta alpha)(4) + h(4)) in L-infinity-norm is the main purpose of this study. Numerical experiments are carried out to support the obtained theoretical results. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:433 / 443
页数:11
相关论文
共 50 条
  • [21] NON-LINEAR STOCHASTIC DIFFERENTIAL DELAY EQUATIONS
    ADOMIAN, G
    RACH, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 91 (01) : 94 - 101
  • [22] Some non-linear diffusion equations and fractal diffusion
    Stephenson, J
    PHYSICA A, 1995, 222 (1-4): : 234 - 247
  • [24] Uncertainty Observer-Based Control for a Class of Fractional- Order Non-Linear Systems with Non-Linear Control Inputs
    Montesinos-Garcia, Juan Javier
    Barahona-Avalos, Jorge Luis
    Linares-Flores, Jesus
    Juarez-Abad, Jose Antonio
    FRACTAL AND FRACTIONAL, 2023, 7 (12)
  • [25] AN ESTIMATOR FOR A CLASS OF NON-LINEAR DISTRIBUTED SYSTEMS
    ALVAREZ, J
    STEPHANOPOULOS, G
    INTERNATIONAL JOURNAL OF CONTROL, 1982, 36 (05) : 787 - 802
  • [26] On the robustness of linear and non-linear fractional-order systems with non-linear uncertain parameters
    N'Doye, Ibrahima
    Darouach, Mohamed
    Voos, Holger
    Zasadzinski, Michel
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2016, 33 (04) : 997 - 1014
  • [27] The Oscillation of a Class of the Fractional-Order Delay Differential Equations
    Lu, Qianli
    Cen, Feng
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [28] SYMMETRIES OF NON-LINEAR DIFFUSION-EQUATIONS
    BRANSON, TP
    STEEB, WH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (03): : 469 - 472
  • [29] SINGULAR NON-LINEAR DIFFUSION-EQUATIONS
    YOUNG, DP
    HOUSTON JOURNAL OF MATHEMATICS, 1983, 9 (01): : 131 - 149
  • [30] CLASS OF SOLUTIONS OF NON-LINEAR BOLTZMANN EQUATIONS
    RAY, D
    JOURNAL OF STATISTICAL PHYSICS, 1979, 20 (01) : 115 - 119