M-regression, false discovery rates and outlier detection with application to genetic association studies

被引:11
|
作者
Lourenco, V. M. [1 ,2 ]
Pires, A. M. [3 ,4 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Math, P-2829516 Caparica, Portugal
[2] Univ Nova Lisboa, Fac Ciencias & Tecnol, CMA, P-2829516 Caparica, Portugal
[3] Univ Tecn Lisboa, Dept Math, P-1049001 Lisbon, Portugal
[4] Univ Tecn Lisboa, CEMAT, P-1049001 Lisbon, Portugal
关键词
Robust regression; Robust outlier test; False discovery rate; Genetic association studies; Single nucleotide polymorphism; ROBUST ESTIMATION; IDENTIFICATION;
D O I
10.1016/j.csda.2014.03.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Robust multiple linear regression methods are valuable tools when underlying classical assumptions are not completely fulfilled. In this setting, robust methods ensure that the analysis is not significantly disturbed by any outlying observation. However, knowledge of these observations may be important to assess the underlying mechanisms of the data. Therefore, a robust outlier test is discussed, together with an adequate false discovery rate correction measure, to be used in the context of multiple linear regression with categorical explanatory variables. The methodology focuses on genetic association studies of quantitative traits, though it has much broader applications. The method is also compared to a benchmark rule from the literature and its good performance is validated by a simulation study and a real data example from a candidate gene study. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 42
页数:10
相关论文
共 50 条
  • [41] Power analysis of principal components regression in genetic association studies
    Yanfeng SHEN Jun ZHU Department of Mathematics Zhejiang University Hangzhou China Institute of Bioinformatics College of Agriculture and Biotechnology Zhejiang University Hangzhou China
    Journal of Zhejiang University(Science B:An International Biomedicine,Biochemistry & Biotechnology Journal), 2009, (10) : 721 - 730
  • [42] Power analysis of principal components regression in genetic association studies
    Yan-feng Shen
    Jun Zhu
    Journal of Zhejiang University SCIENCE B, 2009, 10 : 721 - 730
  • [43] Power analysis of principal components regression in genetic association studies
    Shen, Yan-feng
    Zhu, Jun
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2009, 10 (10): : 721 - 730
  • [45] Bayesian logistic regression: Model selection for genetic association studies
    Uh, H.-W.
    Mertens, B. J. A.
    GENETIC EPIDEMIOLOGY, 2007, 31 (05) : 502 - 502
  • [46] A principal components regression approach to multilocus genetic association studies
    Wang, Kai
    Abbott, Diana
    GENETIC EPIDEMIOLOGY, 2008, 32 (02) : 108 - 118
  • [47] Using Partial Least Squares regression for genetic association studies
    Barhdadi, Amina
    Dube, Marie-Pierre
    GENETIC EPIDEMIOLOGY, 2008, 32 (07) : 679 - 679
  • [48] Multiethnic Genetic Association Studies Improve Power for Locus Discovery
    Pulit, Sara L.
    Voight, Benjamin F.
    de Bakker, Paul I. W.
    PLOS ONE, 2010, 5 (09): : 1 - 9
  • [49] Application of joint models in genetic association studies
    Rocheleau, Ghislain
    Canouil, Mickael
    Yengo, Loic
    Froguel, Philippe
    GENETIC EPIDEMIOLOGY, 2015, 39 (07) : 576 - 576
  • [50] Genetic association analysis using weighted false discovery rate approach on Genetic Analysis Workshop 18 data
    Xin Qiu
    Xiaowei Shen
    Osvaldo Espin-Garcia
    Abul Kalam Azad
    Geoffrey Liu
    Wei Xu
    BMC Proceedings, 8 (Suppl 1)