One-dimensional cadmium hydroxide nanowires towards electrochemical supercapacitor

被引:59
|
作者
Patil, Savita [1 ]
Raut, Shrikant [2 ]
Gore, Ratnakar [1 ]
Sankapal, Babasaheb [2 ]
机构
[1] North Maharashtra Univ, Sch Phys Sci, Dept Phys, Jalgaon 425001, Maharashtra, India
[2] Visvesvaraya Natl Inst Technol, Dept Appl Phys, Nano Mat & Device Lab, Nagpur 440010, Maharashtra, India
关键词
REDUCED GRAPHENE OXIDE; THIN-FILMS; ASYMMETRIC SUPERCAPACITOR; MNO2; NANORODS; ELECTRODEPOSITION; NANOPARTICLES; PERFORMANCE; ARRAYS; TIO2;
D O I
10.1039/c5nj02022k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cadmium hydroxide [Cd(OH)(2)] nanowires have been successfully synthesized by a simple chemical bath deposition method (CBD) on a stainless-steel (SS) substrate. By scanning electron microscopy (SEM), the surface architecture displays the formation of bundles of high-surface-area nanowires (NWs), which are beneficial for supercapacitor applications. Cd(OH)(2) NWs on SS has been tested as an electrode material for supercapacitor applications via electrochemical studies by cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy techniques in an aqueous electrolyte. Electrochemical data confirm that Cd(OH) 2 NWs thin-film electrode exhibits supercapacitor behavior, having a yield of 267 F g(-1) specific capacitance at 5 mV s(-1) scan rate with excellent cycling life (86% capacitance retention over 1000 cycles). A Cd(OH)(2)/Cd(OH)(2) symmetric supercapacitor device provides a maximum energy density of 11.09 W h kg(-1) and a power density of 799 W kg(-1) at a current density of 0.84 A g(-1). The present work demonstrates that Cd(OH)(2) NWs thin film is a promising, low-cost alternative material prepared by a simple, binder-free chemical bath deposition method (CBD) for supercapacitor applications.
引用
收藏
页码:9124 / 9131
页数:8
相关论文
共 50 条
  • [31] One-dimensional growth mechanism of crystalline silicon nanowires
    Zhang, YF
    Tang, YH
    Wang, N
    Lee, CS
    Bello, I
    Lee, ST
    JOURNAL OF CRYSTAL GROWTH, 1999, 197 (1-2) : 136 - 140
  • [32] A structural model of one-dimensional thin silica nanowires
    Zhang, DJ
    Zhang, RQ
    CHEMICAL PHYSICS LETTERS, 2004, 394 (4-6) : 437 - 440
  • [33] Properties of One-Dimensional Molybdenum Nanowires in a Confined Environment
    Meunier, Vincent
    Muramatsu, Hiroyuki
    Hayashi, Takuya
    Kim, Yoong Ahm
    Shimamoto, Daisuke
    Terrones, Humberto
    Dresselhaus, Mildred S.
    Terrones, Mauricio
    Endo, Morinobu
    Sumpter, B. G.
    NANO LETTERS, 2009, 9 (04) : 1487 - 1492
  • [34] The vibration and photoluminescence properties of one-dimensional ZnO nanowires
    Lu, HY
    Chu, SY
    Cheng, SH
    JOURNAL OF CRYSTAL GROWTH, 2005, 274 (3-4) : 506 - 511
  • [35] One-dimensional growth mechanism of amorphous boron nanowires
    Wang, YQ
    Duan, XF
    Cao, LM
    Wang, WK
    CHEMICAL PHYSICS LETTERS, 2002, 359 (3-4) : 273 - 277
  • [36] Template Assembly of Spin Crossover One-Dimensional Nanowires
    Martinho, Paulo N.
    Lemma, Tibebe
    Gildea, Brendan
    Picardi, Gennaro
    Mueller-Bunz, Helge
    Forster, Robert J.
    Keyes, Tia E.
    Redmond, Gareth
    Morgan, Grace G.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (48) : 11995 - 11999
  • [37] Perovskite Thin Film Consisting with One-Dimensional Nanowires
    Li, Xinli
    Chen, Yongchao
    Li, Lihua
    Huang, Jinliang
    MATERIALS, 2018, 11 (09)
  • [38] A simple approach towards one-dimensional mesoporous carbon with superior electrochemical capacitive activity
    Liang, Yanyu
    Feng, Xinliang
    Zhi, Linjie
    Kolb, Ute
    Muellen, Klaus
    CHEMICAL COMMUNICATIONS, 2009, (07) : 809 - 811
  • [39] Electrochemical fabrication of one-dimensional silica nanostructures
    Xu, DS
    Yu, YX
    Zheng, M
    Guo, GL
    Tang, YQ
    ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (08) : 673 - 676
  • [40] One-dimensional MoO2 nanorods for supercapacitor applications
    Rajeswari, Janarthanan
    Kishore, Pilli Satyananda
    Viswanathan, Balasubramanian
    Varadarajan, Thirukkallam Kanthadai
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (03) : 572 - 575