Optical and electrochemical properties of 3D nanoporous Cu2O-Cu inverse opal structures tuned by electrodeposition

被引:8
|
作者
Zhou, Yiwei [1 ]
Zhao, Jian [1 ,2 ]
Liu, Yejing [2 ]
Ng, Ray J. H. [2 ,3 ]
Yang, Joel K. W. [2 ]
机构
[1] Tianjin Univ Technol, Sch Chem & Chem Engn, Tianjin Key Lab Organ Solar Cells & Photochem Con, Tianjin 300384, Peoples R China
[2] Singapore Univ Technol & Design, Engn Dev Dept, Singapore, Singapore
[3] ASTAR, Inst High Performance Comp, Singapore, Singapore
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
Copper; Cuprous oxide; 3D nanoporous structure; Electrodeposition; Inverse opals; THIN-FILM; HOMOJUNCTION FILMS; ENERGY-STORAGE; PERFORMANCE; NANOPARTICLES; CO2; CU; ELECTROCATALYSTS; EPOXIDATION; DEPOSITION;
D O I
10.1016/j.mssp.2020.105444
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Three-dimensional (3D), ordered nanoporous Cu2O and Cu inverse opal structures are attractive for various applications in photonics and catalysis. Here, we demonstrate an approach to fabricate 3D nanoporous inverse opals by electroplating through a uniform polystyrene (PS) opal template. The material composition of the inverse opals can be controlled to consist of pure Cu, Cu2O or Cu2O-Cu composites on Cu foils. Good agreement between experiment and simulation for reflectance spectra exhibits a low-angle-dependent photonic band for Cu2O inverse opals when compared with PS opals. Moreover, 3D nanoporous Cu2O with different layers obtain a large charge capacitance of up to 1.8 mF/cm(2) (geometry), 25 times that of Cu foil. The hybrid Cu2O-Cu inverse opals exhibit higher separation efficiency of photogenerated carriers (optical properties) and double layer capacitance (electrochemical properties) than pure Cu or pure Cu2O inverse opals, which indicates a promising application in photoelectrochemistry.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] 3D Porous Graphene Architecture Integrated with Cu2O for Enhanced Electrochemical Sensing Performance
    Yao, Shun
    Ma, Yingyi
    Xu, Kaizheng
    Liu, Xiaoting
    LANGMUIR, 2024, 40 (34) : 18194 - 18204
  • [32] Electrodeposition of 3D Hierarchical ZnO Nanoflowers and Their Optical Properties
    Wu, Keyue
    Cui, Jingbiao
    ECS SOLID STATE LETTERS, 2013, 2 (01) : R1 - R4
  • [33] Fabrication of 2D and 3D ordered porous ZnO films using 3D opal templates by electrodeposition
    Yan, HW
    Yang, YL
    Fu, ZP
    Yang, BF
    Xia, LS
    Fu, SQ
    Li, FQ
    ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (11) : 1117 - 1121
  • [34] Optical Properties Of Cu2O And CuO
    Butte, S. M.
    Waghuley, S. A.
    3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER & APPLIED PHYSICS (ICC-2019), 2020, 2220
  • [35] The effect of Al2O3 nanopowder on Cu electrodeposition
    Lozano-Morales, A
    Podlaha, EJ
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (07) : C478 - C483
  • [36] Optical Properties of Cu2O Nanowhiskers
    Labzovskaya, M. E.
    Novikov, B. V.
    Serov, A. Yu.
    Mikushev, S. V.
    Davydov, V. Yu.
    Smirnov, A. N.
    Talalaev, V. G.
    SEMICONDUCTORS, 2023, 57 (12) : 543 - 549
  • [37] Optical Properties of Cu2O Nanowhiskers
    M. E. Labzovskaya
    B. V. Novikov
    A. Yu. Serov
    S. V. Mikushev
    V. Yu. Davydov
    A. N. Smirnov
    V. G. Talalaev
    Semiconductors, 2023, 57 : 543 - 549
  • [38] Preparation and Photoelectrochemical Behavior of Cu2O/TiO2 Inverse Opal Heterojunction Arrays
    Kim, Hyun Sik
    Lee, Sang Kwon
    Kang, Soon Hyung
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2012, 15 (03): : 149 - 153
  • [39] The thermochemical properties of Cu3O2 and Cu4O3
    Moiseev, GK
    Vatolin, NA
    ZHURNAL FIZICHESKOI KHIMII, 1998, 72 (09): : 1554 - 1558
  • [40] Cu doping effects on optical and magnetic properties of In2O3
    Sasaki, M
    Yasui, K
    Kohiki, S
    Deguchi, H
    Matsushima, S
    Oku, M
    Shishido, T
    JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 334 (1-2) : 205 - 210