Time integrators for shells in multibody dynamics

被引:6
|
作者
Bauchau, OA
Choi, JY [1 ]
Bottasso, CL
机构
[1] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[2] Politecn Milan, Dipartimento Ingn Aerosp, I-20138 Milan, Italy
关键词
D O I
10.1016/S0045-7949(02)00053-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Energy preserving/decaying schemes are presented for the simulation of the non-linear multibody systems involving shell components. The proposed schemes are designed to meet four specific requirements: unconditional non-linear stability of the scheme, a rigorous treatment of both geometric and material non-linearities, exact satisfaction of the constraints, and the presence of high frequency numerical dissipation. The kinematic non-linearities associated with arbitrarily large displacements and rotations of shells are treated in a rigorous manner, and the material non-linearities can be handled when the constitutive laws stein from the existence of a strain energy density function. The efficiency and robustness of the proposed approach is illustrated with specific numerical examples that also demonstrate the need for integration schemes possessing high frequency numerical dissipation. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:871 / 889
页数:19
相关论文
共 50 条
  • [21] The Finite Element Method in Time for Multibody Dynamics
    Bauchau, Olivier A.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2024, 19 (07):
  • [22] Real-Time Multibody Dynamics and Applications
    Cuadrado, Javier
    Dopico, Daniel
    Naya, Miguel A.
    Gonzalez, M.
    SIMULATION TECHIQUES FOR APPLIED DYNAMICS, 2008, 507 : 247 - 311
  • [23] THE FINITE ELEMENT METHOD IN TIME FOR MULTIBODY DYNAMICS
    Bauchau, Olivier A.
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 10, 2023,
  • [24] Heterogeneous asynchronous time integrators for computational structural dynamics
    Gravouil, A.
    Combescure, A.
    Brun, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 102 (3-4) : 202 - 232
  • [25] Implicit-explicit time integration in multibody dynamics
    Arnold, Martin
    Hippmann, Gerhard
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 6, PTS A-C, 2005, : 167 - 176
  • [26] A comparison of high-order time integrators for thermal convection in rotating spherical shells
    Garcia, F.
    Net, M.
    Garcia-Archilla, B.
    Sanchez, J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (20) : 7997 - 8010
  • [27] High-order variational time integrators for particle dynamics
    Miglio, E.
    Parolini, N.
    Penati, M.
    Porcu, R.
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2018, 9 (02): : 34 - 49
  • [28] MULTIBODY DYNAMICS
    KANE, TR
    LEVINSON, DA
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1983, 50 (4B): : 1071 - 1078
  • [29] Multiple time step integrators in ab initio molecular dynamics
    Luehr, Nathan
    Markland, Thomas E.
    Martinez, Todd J.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (08):
  • [30] Multibody Dynamics Techniques for Real-Time Parameter Estimation
    Sandu, Corina
    Kolansky, Jeremy
    Botha, Theunis
    Els, Schalk
    ADVANCED AUTONOMOUS VEHICLE DESIGN FOR SEVERE ENVIRONMENTS, 2015, 44 : 221 - 241