Multi-objective evolutionary optimization of unsupervised latent variables of turning process

被引:10
|
作者
de Melo, Simone Aparecida [1 ,3 ]
Pereira, Robson Bruno Dutra [1 ,2 ,3 ]
Reis, Allexandre Fortes da Silva [1 ,2 ]
Lauro, Carlos Henrique [1 ,3 ]
Brandao, Lincoln Cardoso [1 ,3 ]
机构
[1] Univ Fed Sao Joao del Rei, Sao Joao Del Rei, MG, Brazil
[2] Ctr Innovat Modeling & Optimizat Syst, CIMOS, Sao Joao Del Rei, MG, Brazil
[3] Ctr Innovat Sustainable Mfg, CIMS, Sao Joao Del Rei, MG, Brazil
关键词
Unsupervised learning; Factor analysis; Multi-objective evolutionary algorithms; Turning process; NONDOMINATED SORTING APPROACH; NORMAL-BOUNDARY INTERSECTION; NSGA-III; ALGORITHM; PREDICTION; MULTIPLE; PATTERN; SURFACE;
D O I
10.1016/j.asoc.2022.108713
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Manufacturing process modeling and optimization is a challenging task due to the numerous objectives to be considered in the optimization. Generally, the optimization of these processes requires many objective optimization methods to deal with four or more objective functions. However, the correlation structure of the outputs cannot be disregarded. In this work, it is proposed the unsupervised learning of the outputs together with multi-objective evolutionary optimization of the turning process of AISI 4340 steel considering three scenarios varying the tool nose radius. A central composite design varying the process parameters is used to conduct the experimental tests. After tests and measurements of quality and productivity outputs the p correlated observed outputs are firstly transformed in m unobserved latent variables through factor analysis using principal axis extraction method and varimax rotation, with m < p. Subsequently, the relation between the process parameters and the scores of latent variables is modeled through response surface methodology. Multi-objective evolutionary optimization methods are applied in the reduced and uncorrelated set of response models of the transformed outputs. The multi-objective algorithms are compared through hypervolume metric and the pseudo-weights approach is used to decision making. The proposed method can also be applied in other multi-response processes with correlated outputs. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Uniformity Assessment for Evolutionary Multi-Objective Optimization
    Li, Miqing
    Zheng, Jinhua
    Xiao, Guixia
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 625 - 632
  • [42] Multi-objective evolutionary algorithms for structural optimization
    Coello, CAC
    Pulido, GT
    Aguirre, AH
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2244 - 2248
  • [43] Multi-objective evolutionary computation and fuzzy optimization
    Jiménez, F.
    Cadenas, J.M.
    Sánchez, G.
    Gómez-Skarmeta, A.F.
    Verdegay, J.L.
    International Journal of Approximate Reasoning, 2006, 43 (01): : 59 - 75
  • [44] Noise handling in evolutionary multi-objective optimization
    Goh, C. K.
    Tan, K. C.
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 1339 - +
  • [45] Handling uncertainties in evolutionary multi-objective optimization
    Tan, Kay Chen
    Goh, Chi Keong
    COMPUTATIONAL INTELLIGENCE: RESEARCH FRONTIERS, 2008, 5050 : 262 - +
  • [46] A study on multiform multi-objective evolutionary optimization
    Liangjie Zhang
    Yuling Xie
    Jianjun Chen
    Liang Feng
    Chao Chen
    Kai Liu
    Memetic Computing, 2021, 13 : 307 - 318
  • [47] Weighted preferences in evolutionary multi-objective optimization
    Friedrich, Tobias
    Kroeger, Trent
    Neumann, Frank
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2013, 4 (02) : 139 - 148
  • [48] A Parallel Framework for Multi-objective Evolutionary Optimization
    Dasgupta, Dipankar
    Becerra, David
    Banceanu, Alex
    Nino, Fernando
    Simien, James
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [49] Interleaving guidance in evolutionary multi-objective optimization
    Bui, Lam Thu
    Deb, Kalyanmoy
    Abbass, Hussein A.
    Essam, Daryl
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2008, 23 (01) : 44 - 63
  • [50] Evolutionary constrained multi-objective optimization: a review
    Jing Liang
    Hongyu Lin
    Caitong Yue
    Xuanxuan Ban
    Kunjie Yu
    Vicinagearth, 1 (1):