q-CHEBYSHEV POLYNOMIALS AND THEIR q-CLASSICAL CHARACTERS

被引:2
|
作者
MEJRI, M. [1 ]
机构
[1] Univ Tunis el Manar, Preparatory Inst Engn Studies, Campus Univ el Manar,BP 244,El Manar II, Tunis 2092, Tunisia
来源
PROBLEMY ANALIZA-ISSUES OF ANALYSIS | 2022年 / 11卷 / 01期
关键词
q-difference equation; H-q-semiclassical polynomials; orthogonality measure;
D O I
10.15393/j3.art.2022.10330
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we give some properties of the q-Chebyshev polynomials through the Stieltjes function associated with their regular forms (linear functional). Some connection formulas are highlighted. The integral representation of those forms are given.
引用
收藏
页码:81 / 101
页数:21
相关论文
共 50 条
  • [21] Characterizations of the Symmetric T(θ, q)-Classical Orthogonal q-Polynomials
    Bouras, B.
    Habbachi, Y.
    Marcellan, F.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (02)
  • [22] q-Dunkl-classical q-Hermite type polynomials
    Ben Cheikh, Youssef
    Gaied, Mohamed
    Zaghouani, Ali
    GEORGIAN MATHEMATICAL JOURNAL, 2014, 21 (02) : 125 - 137
  • [23] The I(q,w) classical orthogonal polynomials
    Maroni, P
    Mejri, M
    APPLIED NUMERICAL MATHEMATICS, 2002, 43 (04) : 423 - 458
  • [24] Characterization of q-Dunkl-classical symmetric orthogonal q-polynomials
    Baghdadi Aloui
    Jihad Souissi
    The Ramanujan Journal, 2022, 57 : 1355 - 1365
  • [25] Characterization of q-Dunkl-classical symmetric orthogonal q-polynomials
    Aloui, Baghdadi
    Souissi, Jihad
    RAMANUJAN JOURNAL, 2022, 57 (04): : 1355 - 1365
  • [26] ON THE NATURAL q-ANALOGUES OF THE CLASSICAL ORTHOGONAL POLYNOMIALS
    Kheriji, L.
    Maroni, P.
    EURASIAN MATHEMATICAL JOURNAL, 2013, 4 (02): : 82 - 103
  • [27] On (p, q)-classical orthogonal polynomials and their characterization theorems
    Masjed-Jamei, M.
    Soleyman, F.
    Area, I.
    Nieto, J. J.
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [28] A characterization of the classical orthogonal discrete and q-polynomials
    Alfaro, M.
    Alvarez-Nodarse, R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 201 (01) : 48 - 54
  • [29] On a structure formula for classical q-orthogonal polynomials
    Koepf, W
    Schmersau, D
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 136 (1-2) : 99 - 107
  • [30] THE q-ANALOG OF THE RODRIGUES FORMULA FOR SYMMETRIC q-DUNKL-CLASSICAL ORTHOGONAL q-POLYNOMIALS
    Souissi, Jihad
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2023, 29 (01): : 73 - 80