Combined Optimization and Regression Machine Learning for Solar Irradiation and Wind Speed Forecasting

被引:1
|
作者
Amoura, Yahia [1 ,4 ]
Torres, Santiago [4 ]
Lima, Jose [1 ,3 ]
Pereira, Ana I. [1 ,2 ]
机构
[1] Inst Politecn Braganca, Res Ctr Digitalizat & Intelligent Robot CeDRI, Braganca, Portugal
[2] Univ Minho, ALGORITMI Ctr, Braga, Portugal
[3] INESC TEC INESC Technol & Sci, Porto, Portugal
[4] Univ Laguna, San Cristobal la Laguna, Spain
关键词
Renewable energy; Forecasting; Machine learning; Optimization; Wind speed; Solar irradiation; RADIATION; ENERGY; MODELS; TIME;
D O I
10.1007/978-3-031-23236-7_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prediction of solar irradiation and wind speed are essential for enhancing the renewable energy integration into the existing power system grids. However, the deficiencies caused to the network operations provided by their intermittent effects need to be investigated. Regarding reserves management, regulation, scheduling, and dispatching, the intermittency in power output become a challenge for the system operator. This had given the interest of researchers for developing techniques to predict wind speeds and solar irradiation over a large or short-range of temporal and spatial perspectives to accurately deal with the variable power output. Before, several statistical, and even physics, approaches have been applied for prediction. Nowadays, machine learning is widely applied to do it and especially regression models to assess them. Tuning these models is usually done following manual approaches by changing the minimum leaf size of a decision tree, or the box constraint of a support vector machine, for example, that can affect its performance. Instead of performing it manually, this paper proposes to combine optimization methods including the bayesian optimization, grid search, and random search with regression models to extract the best hyper parameters of the model. Finally, the results are compared with the manually tuned models. The Bayesian gives the best results in terms of extracting hyper-parameters by giving more accurate models.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 50 条
  • [21] Machine Learning Based Univariate Models For Long Term Wind Speed Forecasting
    Akash, R.
    Rangaraj, A. G.
    Meenal, R.
    Lydia, M.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 779 - 784
  • [22] Short-term Wind Speed Forecasting using Machine Learning Algorithms
    Fonseca, Sebastiao B.
    de Oliveira, Roberto Celio L.
    Affonso, Carolina M.
    2021 IEEE MADRID POWERTECH, 2021,
  • [23] Research on the Combined Forecasting Method of Wind Speed
    Guo Chunlin
    Man Zhou
    Pei Xin
    Yang Xiaoyan
    PROCEEDINGS OF 2017 CHINA INTERNATIONAL ELECTRICAL AND ENERGY CONFERENCE (CIEEC 2017), 2017, : 194 - 198
  • [24] Composite quantile regression extreme learning machine with feature selection for short-term wind speed forecasting: A new approach
    Zheng, Weiqin
    Peng, Xiangang
    Lu, Di
    Zhang, Dan
    Liu, Yi
    Lin, Zhehao
    Lin, Lixiang
    ENERGY CONVERSION AND MANAGEMENT, 2017, 151 : 737 - 752
  • [25] Solar Irradiation Forecasting Using Ensemble Voting Based on Machine Learning Algorithms
    Solano, Edna S.
    Affonso, Carolina M.
    SUSTAINABILITY, 2023, 15 (10)
  • [26] Solar Energy Forecasting With Performance Optimization Using Machine Learning Techniques
    Murugesan, S.
    Mahasree, M.
    Kavin, F.
    Bharathiraja, N.
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2024,
  • [27] Machine Learning for Wind Power Forecasting
    Cardoso de Figueiredo, Yann Fabricio
    Lima de Campos, Lidio Mauro
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [28] Harmonics Forecasting of Wind and Solar Hybrid Model Based on Deep Machine Learning
    Al Hadi, Fawaz M.
    Aly, Hamed H.
    Little, Timothy
    IEEE ACCESS, 2023, 11 : 100438 - 100457
  • [29] Short-Term Wind Speed Forecasting Based on Ensemble Online Sequential Extreme Learning Machine and Bayesian Optimization
    Quan, Jicheng
    Shang, Li
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [30] Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization
    Lv, Sheng-Xiang
    Wang, Lin
    APPLIED ENERGY, 2022, 311