Confluence and strong normalisation of the generalised multiary λ-calculus

被引:0
|
作者
Santo, JE [1 ]
Pinto, L [1 ]
机构
[1] Univ Minho, Dept Matemat, P-4710057 Braga, Portugal
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In a previous work we introduced the generalised multiary lambda-calculus lambdaJ(m), an extension of the lambda-calculus where functions can be applied to lists of arguments (a feature which we call "multiarity") and encompassing "generalised" eliminations of von Plato. In this paper we prove confluence and strong normalisation of the reduction relations of lambdaJ(m). Proofs of these results lift corresponding ones obtained by Joachimski and Matthes for the system LambdaJ. Such lifting requires the study of how multiarity and some forms of generality can express each other. This study identifies a variant of LambdaJ, and another system isomorphic to it, as being the subsystems of lambdaJ(m) with, respectively, minimal and maximal use of multiarity. We argue then that lambdaJ(m) is the system with the right use of multiarity.
引用
收藏
页码:194 / 209
页数:16
相关论文
共 50 条
  • [21] Characterising strong normalisation for explicit substitutions
    van Bakel, S
    Dezani-Ciancaglini, M
    LATIN 2002: THEORETICAL INFORMATICS, 2002, 2286 : 356 - 370
  • [22] STRONG NORMALISATION FOR APPLIED LAMBDA CALCULI
    Berger, Ulrich
    LOGICAL METHODS IN COMPUTER SCIENCE, 2005, 1 (02)
  • [23] A domain model characterising strong normalisation
    Berger, Ulrich
    ANNALS OF PURE AND APPLIED LOGIC, 2008, 156 (01) : 39 - 50
  • [25] A NEW COINDUCTIVE CONFLUENCE PROOF FOR INFINITARY LAMBDA CALCULUS
    Czajka, Lukasz
    LOGICAL METHODS IN COMPUTER SCIENCE, 2020, 16 (01)
  • [26] Quantum integrability and generalised quantum Schubert calculus
    Gorbounov, Vassily
    Korff, Christian
    ADVANCES IN MATHEMATICS, 2017, 313 : 282 - 356
  • [27] A proof of strong normalisation using domain theory
    Coquand, Thierry
    Spiwack, Arnaud
    21ST ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2006, : 307 - +
  • [28] A PROOF OF STRONG NORMALISATION USING DOMAIN THEORY
    Coquand, Thierry
    Spiwack, Arnaud
    LOGICAL METHODS IN COMPUTER SCIENCE, 2007, 3 (04)
  • [29] Strong lensing statistics and the power spectrum normalisation
    Fedeli, C.
    Bartelmann, M.
    Meneghetti, M.
    Moscardini, L.
    Astronomy and Astrophysics, 2008, 486 (01): : 35 - 44
  • [30] Strong lensing statistics and the power spectrum normalisation
    Fedeli, C.
    Bartelmann, M.
    Meneghetti, M.
    Moscardini, L.
    ASTRONOMY & ASTROPHYSICS, 2008, 486 (01) : 35 - 44