A High-Accuracy of Transmission Line Faults (TLFs) Classification Based on Convolutional Neural Network

被引:7
|
作者
Fuada, S. [1 ]
Shiddieqy, H. A. [2 ]
Adiono, T. [2 ]
机构
[1] Univ Pendidikan Indonesia, Program Studi Sistem Telekomunikasi, Bandung, Indonesia
[2] Inst Teknol Bandung, Univ Ctr Excellence Microelect, Bandung, Indonesia
关键词
fault detection; fault classification; transmission lines; convolutional neural network; machine learning;
D O I
10.24425/ijet.2020.134024
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
To improve power system reliability, a protection mechanism is highly needed. Early detection can be used to prevent failures in the power transmission line (TL). A classification system method is widely used to protect against false detection as well as assist the decision analysis. Each TL signal has a continuous pattern in which it can be detected and classified by the conventional methods, i.e., wavelet feature extraction and artificial neural network (ANN). However, the accuracy resulting from these mentioned models is relatively low. To overcome this issue, we propose a machine learning-based on Convolutional Neural Network (CNN) for the transmission line faults (TLFs) application. CNN is more suitable for pattern recognition compared to conventional ANN and ANN with Discrete Wavelet Transform (DWT) feature extraction. In this work, we first simulate our proposed model by using Simulink (R) and Matlab (R). This simulation generates a fault signal dataset, which is divided into 45.738 data training and 4.752 data tests. Later, we design the number of machine learning classifiers. Each model classifier is trained by exposing it to the same dataset. The CNN design, with raw input, is determined as an optimal output model from the training process with 100% accuracy.
引用
收藏
页码:655 / 664
页数:10
相关论文
共 50 条
  • [31] High-Accuracy Spiking Neural Network for Objective Recognition Based on Proportional Attenuating Neuron
    Li-Ye Niu
    Ying Wei
    Jun-Yu Long
    Wen-Bo Liu
    Neural Processing Letters, 2022, 54 : 1055 - 1073
  • [32] High-accuracy neural-network-based array synthesis including element coupling
    Ayestaran, Rafael G.
    Las-Heras, Fernando
    Herran, Luis F.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2006, 5 (01): : 45 - 48
  • [33] Transmission Line Fault Diagnosis Based on Wavelet Packet Analysis and Convolutional Neural Network
    Wang, Daohao
    Yang, Dongsheng
    Bowen, Zhou
    Ma, Min
    Zhang, Hongyu
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 425 - 429
  • [34] Object detection of transmission line visual images based on deep convolutional neural network
    Zhou Zhu-bo
    Gao Jiao
    Zhang Wei
    Wang Xiao-jing
    Zhang Jiang
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2018, 33 (04) : 317 - 325
  • [35] High-Accuracy Spiking Neural Network for Objective Recognition Based on Proportional Attenuating Neuron
    Niu, Li-Ye
    Wei, Ying
    Long, Jun-Yu
    Liu, Wen-Bo
    NEURAL PROCESSING LETTERS, 2022, 54 (02) : 1055 - 1073
  • [36] Transformer Faults Classification Based on Convolution Neural Network
    Elmohallawy, Maha A.
    Abdel-Gawad, Amal F.
    Hassan, Amir Yassin
    Selem, Sameh I.
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2023, 14 (09) : 1069 - 1075
  • [37] A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification
    Lin, Lan
    Xiong, Min
    Zhang, Ge
    Kang, Wenjie
    Sun, Shen
    Wu, Shuicai
    SENSORS, 2023, 23 (04)
  • [38] High-accuracy image steganography with invertible neural network and generative adversarial network
    Wang, Ke
    Zhu, Yani
    Chang, Qi
    Wang, Junyu
    Yao, Ye
    SIGNAL PROCESSING, 2025, 234
  • [39] Self attention convolutional neural network with time series imaging based feature extraction for transmission line fault detection and classification
    Fahim, Shahriar Rahman
    Sarker, Yeahia
    Sarker, Subrata K.
    Sheikh, Md Rafiqul Islam
    Das, Sajal K.
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 187
  • [40] Simplified Artificial Neural Network based Fault Classification and Location for Transmission Line
    Ahmed, Shihab
    Islam, Md Rashidul
    2019 5TH INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL ENGINEERING (ICAEE), 2019, : 485 - 489