Structurally improved, urea-templated, K2CO3-based sorbent pellets for CO2 capture

被引:34
|
作者
Wang, Peng [1 ]
Sun, Jian [1 ]
Guo, Yafei [1 ]
Zhao, Chuanwen [1 ]
Li, Weiling [1 ]
Wang, Guodong [1 ]
Lei, Su [1 ]
Lu, Ping [1 ]
机构
[1] Nanjing Normal Univ, Sch Energy & Mech Engn, Engn Lab Energy Syst Proc Convers & Emiss Control, Nanjing 210042, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Pelletization; K2CO3-based sorbents; CO2; capture; Extrusion-spheronization; Pore-forming; CAO-BASED PELLETS; POTASSIUM-BASED SORBENT; CARBIDE SLAG PELLETS; FLUE-GAS; PERFORMANCE; BEHAVIOR; K2CO3/AL2O3; CARBONATION; BED; ENHANCEMENT;
D O I
10.1016/j.cej.2019.05.091
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The development of K2CO3-based sorbents with desirable CO2 capture capacity and mechanical property is highly necessary for its large-scale application. In this work, a range of extruded-spheronized K2CO3-based pellets containing different K2CO3 loading (30-70 wt%) and Al2O3-based supports (i.e., activated alumina, Bayer aluminum hydroxide, kaolinite clay and calcium aluminate cement) were prepared for CO2 capture. It is found that the distinct textural properties of different supports result in the obvious diversities in CO2 uptake and mechanical property of K2CO3-based pellets. The activated alumina-supported sorbent pellets loaded with 50 wt % of K2CO3 possess the highest CO2 adsorption capacity of 2.29 mmol/g. It is mainly attributed to the moderate amounts of active component contributing to good textural properties and abundant CO2-philic sites, whereas excessive K2CO3 loading will cause the destruction of porous structure, consequently the inferior CO2 uptake. Moreover, the addition of 15 wt% of urea can furher enhace CO2 uptake of the activated alumina-supported sorbent pellets loaded with 50 wt% of K2CO3, similar to 3.10 mmol CO2/g. The improved CO2 uptake is due to the significantly enhanced porosity of sorbent pellets as a result of urea decomposition. In addition, the urea-templated sorbent pellets still maintain the high compressive strength (18.96 MPa) and good attrition resistance (a weight loss of 0.59% after 4000 rotations).
引用
收藏
页码:20 / 28
页数:9
相关论文
共 50 条
  • [31] Modeling of the carbonation behavior of a calcium based sorbent for CO2 capture
    Yu, Y. S.
    Liu, W. Q.
    An, H.
    Yang, F. S.
    Wang, G. X.
    Feng, B.
    Zhang, Z. X.
    Rudolph, V.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 10 : 510 - 519
  • [32] Calcium-based sorbent doped with attapulgite for CO2 capture
    Chen, Huichao
    Zhao, Changsui
    Yu, Weiwei
    APPLIED ENERGY, 2013, 112 : 67 - 74
  • [33] CaO sorbent stabilisation for CO2 capture applications
    Elzinga, G. D.
    Reijers, H. T. J.
    Cobden, P. D.
    Haije, W. G.
    van den Brink, R. W.
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 844 - 851
  • [34] Fabrication of structurally improved KNaTiO3 pellets derived from cheap rutile sand for high-temperature CO2 capture
    Fan, Wenqi
    Zhang, Tianyu
    Musyoka, Nicholas M.
    Huang, Liang
    Li, Hailong
    Wang, Lidong
    Wang, Qiang
    FUEL, 2023, 354
  • [35] Characteristics of an advanced carbon sorbent for CO2 capture
    Hornbostel, Marc D.
    Bao, Jianer
    Krishnan, Gopala
    Nagar, Anoop
    Jayaweera, Indira
    Kobayashi, Takao
    Sanjurjo, Angel
    Sweeney, Josh
    Carruthers, Donald
    Petruska, Melissa A.
    Dubois, Lawrence
    CARBON, 2013, 56 : 77 - 85
  • [36] Aramid as Potential Solid Sorbent for CO2 Capture
    Zulfiqar, Sonia
    Sarwar, Muhammad Ilyas
    POLYMER SCIENCE SERIES B, 2015, 57 (06) : 702 - 709
  • [37] Aramid as potential solid Sorbent for CO2 capture
    Sonia Zulfiqar
    Muhammad Ilyas Sarwar
    Polymer Science Series B, 2015, 57 : 702 - 709
  • [38] Regenerable CO2 capture with MGO sorbent.
    Breault, RW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U467 - U467
  • [39] Sorbent cost and performance in CO2 capture systems
    Abanades, JC
    Rubin, ES
    Anthony, EJ
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (13) : 3462 - 3466
  • [40] Direct CO2 capture from ambient air using K2CO3/Y2O3 composite sorbent
    Derevschikov, Vladimir S.
    Veselovskaya, Janna V.
    Kardash, Tatyana Yu
    Trubitsyn, Dmitry A.
    Okunev, Aleksey G.
    FUEL, 2014, 127 : 212 - 218