BOUNDEDNESS OF STEIN'S SQUARE FUNCTIONS ASSOCIATED TO OPERATORS ON HARDY SPACES

被引:1
|
作者
Yan, Xuefang [1 ,2 ]
机构
[1] Sun Yat Sen Zhongshan Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Heibei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050016, Peoples R China
关键词
Stein's square function; non-negative self-adjoint operator; Hardy spaces; Davies-Gaffney estimate; Plancherel type estimate; SPECTRAL MULTIPLIERS; RIESZ TRANSFORM; BOUNDS;
D O I
10.1016/S0252-9602(14)60057-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, d, mu) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure A. Let L be a second order non-negative self-adjoint operator on L-2(X). Assume that the semigroup e(-tL) generated by L satisfies the Davies-Gaffney estimates. Also, assume that L satisfies Plancherel type estimate. Under these conditions, we show that Stein's square function G(delta)(L) arising from Bochner-Riesz means associated to L is bounded from the Hardy spaces H-L(p)(X) to L-P(X) for all 0 <p <= 1.
引用
收藏
页码:891 / 904
页数:14
相关论文
共 50 条
  • [21] Boundedness of Generalized Riesz Transforms on Orlicz–Hardy Spaces Associated to Operators
    Jun Cao
    Der-Chen Chang
    Dachun Yang
    Sibei Yang
    Integral Equations and Operator Theory, 2013, 76 : 225 - 283
  • [22] Boundedness of area operators on anisotropic Hardy spaces
    Pang, Changbao
    Wang, Maofa
    Xu, Bang
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (04) : 1550 - 1569
  • [23] Lp-Boundedness of Stein's Square Functions Associated with Fourier-Bessel Expansions
    Almeida, Victor
    Betancor, Jorge J.
    Dalmasso, Estefania
    Rodriguez-Mesa, Lourdes
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [24] Boundedness of Fourier integral operators on Hardy spaces
    Peloso, Marco M.
    Secco, Silvia
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2008, 51 : 443 - 463
  • [25] Boundedness of Area Functions Related to Schrodinger Operators and Their Commutators in Weighted Hardy Spaces
    Tang, Lin
    Wang, Jue
    Zhu, Hua
    ANALYSIS IN THEORY AND APPLICATIONS, 2021, 37 (03): : 362 - 386
  • [26] On the boundedness of generalized integration operators on Hardy spaces
    Chalmoukis, N.
    Nikolaidis, G.
    COLLECTANEA MATHEMATICA, 2024,
  • [27] Area functions on Hardy spaces associated to Schrodinger operators
    Zhu, YP
    ACTA MATHEMATICA SCIENTIA, 2003, 23 (04) : 521 - 530
  • [28] Weighted Variable Hardy Spaces Associated with Para-Accretive Functions and Boundedness of Calderon-Zygmund Operators
    Tan, Jian
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (02)
  • [29] Weighted Variable Hardy Spaces Associated with Para-Accretive Functions and Boundedness of Calderón–Zygmund Operators
    Jian Tan
    The Journal of Geometric Analysis, 2023, 33
  • [30] Boundedness of Generalized Riesz Transforms on Orlicz-Hardy Spaces Associated to Operators
    Cao, Jun
    Chang, Der-Chen
    Yang, Dachun
    Yang, Sibei
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 76 (02) : 225 - 283