BOUNDEDNESS OF STEIN'S SQUARE FUNCTIONS ASSOCIATED TO OPERATORS ON HARDY SPACES

被引:1
|
作者
Yan, Xuefang [1 ,2 ]
机构
[1] Sun Yat Sen Zhongshan Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Heibei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050016, Peoples R China
关键词
Stein's square function; non-negative self-adjoint operator; Hardy spaces; Davies-Gaffney estimate; Plancherel type estimate; SPECTRAL MULTIPLIERS; RIESZ TRANSFORM; BOUNDS;
D O I
10.1016/S0252-9602(14)60057-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, d, mu) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure A. Let L be a second order non-negative self-adjoint operator on L-2(X). Assume that the semigroup e(-tL) generated by L satisfies the Davies-Gaffney estimates. Also, assume that L satisfies Plancherel type estimate. Under these conditions, we show that Stein's square function G(delta)(L) arising from Bochner-Riesz means associated to L is bounded from the Hardy spaces H-L(p)(X) to L-P(X) for all 0 <p <= 1.
引用
收藏
页码:891 / 904
页数:14
相关论文
共 50 条