Towards universal topological quantum computation in the ν=5/2 fractional quantum Hall state

被引:95
|
作者
Freedman, Michael
Nayak, Chetan
Walker, Kevin
机构
[1] Univ Calif Santa Barbara, Microsoft Res, Project Q, Santa Barbara, CA 93108 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
关键词
D O I
10.1103/PhysRevB.73.245307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Pfaffian state, which may describe the quantized Hall plateau observed at Landau level filling fraction nu= 5/2, can support topologically-protected qubits with extremely low error rates. Braiding operations also allow perfect implementation of certain unitary transformations of these qubits. However, in the case of the Pfaffian state, this set of unitary operations is not quite sufficient for universal quantum computation (i.e. is not dense in the unitary group). If some topologically unprotected operations are also used, then the Pfaffian state supports universal quantum computation, albeit with some operations which require error correction. On the other hand, if certain topology-changing operations can be implemented, then fully topologically-protected universal quantum computation is possible. In order to accomplish this, it is necessary to measure the interference between quasiparticle trajectories which encircle other moving trajectories in a time-dependent Hall droplet geometry [cond-mat/0512072].
引用
收藏
页数:21
相关论文
共 50 条
  • [31] The Universal Edge Physics in Fractional Quantum Hall Liquids
    Hu, Zi-Xiang
    Bhatt, R. N.
    Wan, Xin
    Yang, Kun
    IUPAP C20 CONFERENCE ON COMPUTATIONAL PHYSICS (CCP 2011), 2012, 402
  • [32] Universal modeling of oscillations in fractional quantum Hall fluids
    Ji, Guangyue
    Bose, Koyena
    Balram, Ajit C.
    Yang, Bo
    PHYSICAL REVIEW B, 2024, 110 (07)
  • [33] From quantum Hall ferromagnetism to huge longitudinal resistance at the 2/3 fractional quantum Hall state
    Kraus, S
    Stern, O
    Lok, JGS
    Dietsche, W
    von Klitzing, K
    Bichler, M
    Schuh, D
    Wegscheider, W
    PHYSICAL REVIEW LETTERS, 2002, 89 (26)
  • [34] Two groups measure the quasiparticle charge of the 5/2 fractional quantum Hall state
    Day, Charles
    PHYSICS TODAY, 2008, 61 (06) : 14 - 16
  • [35] Numerical Calculation of the Neutral Fermion Gap at the ν=5/2 Fractional Quantum Hall State
    Bonderson, Parsa
    Feiguin, Adrian E.
    Nayak, Chetan
    PHYSICAL REVIEW LETTERS, 2011, 106 (18)
  • [36] Nonlocality as a benchmark for universal quantum computation in Ising anyon topological quantum computers
    Howard, Mark
    Vala, Jiri
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [37] Excitations of the ν=5/2 fractional quantum Hall state and the generalized composite fermion picture
    Simion, George E.
    Quinn, John J.
    PHYSICAL REVIEW B, 2010, 81 (11)
  • [38] ν=5/2 Fractional Quantum Hall Effect at 10 T: Implications for the Pfaffian State
    Zhang, Chi
    Knuuttila, T.
    Dai, Yanhua
    Du, R. R.
    Pfeiffer, L. N.
    West, K. W.
    PHYSICAL REVIEW LETTERS, 2010, 104 (16)
  • [39] Evidence for ν=5/2 fractional quantum Hall nematic state in parallel magnetic fields
    Liu, Yang
    Hasdemir, S.
    Shayegan, M.
    Pfeiffer, L. N.
    West, K. W.
    Baldwin, K. W.
    PHYSICAL REVIEW B, 2013, 88 (03):
  • [40] Edge Reconstruction in the ν=2/3 Fractional Quantum Hall State
    Wang, Jianhui
    Meir, Yigal
    Gefen, Yuval
    PHYSICAL REVIEW LETTERS, 2013, 111 (24)