Towards universal topological quantum computation in the ν=5/2 fractional quantum Hall state

被引:95
|
作者
Freedman, Michael
Nayak, Chetan
Walker, Kevin
机构
[1] Univ Calif Santa Barbara, Microsoft Res, Project Q, Santa Barbara, CA 93108 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
关键词
D O I
10.1103/PhysRevB.73.245307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Pfaffian state, which may describe the quantized Hall plateau observed at Landau level filling fraction nu= 5/2, can support topologically-protected qubits with extremely low error rates. Braiding operations also allow perfect implementation of certain unitary transformations of these qubits. However, in the case of the Pfaffian state, this set of unitary operations is not quite sufficient for universal quantum computation (i.e. is not dense in the unitary group). If some topologically unprotected operations are also used, then the Pfaffian state supports universal quantum computation, albeit with some operations which require error correction. On the other hand, if certain topology-changing operations can be implemented, then fully topologically-protected universal quantum computation is possible. In order to accomplish this, it is necessary to measure the interference between quasiparticle trajectories which encircle other moving trajectories in a time-dependent Hall droplet geometry [cond-mat/0512072].
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Universal quantum computation with the ν=5/2 fractional quantum Hall state
    Bravyi, S
    PHYSICAL REVIEW A, 2006, 73 (04):
  • [2] Universal Topological Quantum Computation from a Superconductor-Abelian Quantum Hall Heterostructure
    Mong, Roger S. K.
    Clarke, David J.
    Alicea, Jason
    Lindner, Netanel H.
    Fendley, Paul
    Nayak, Chetan
    Oreg, Yuval
    Stern, Ady
    Berg, Erez
    Shtengel, Kirill
    Fisher, Matthew P. A.
    PHYSICAL REVIEW X, 2014, 4 (01):
  • [3] Intrinsic gap of the ν=5/2 fractional quantum Hall state
    Dean, C. R.
    Piot, B. A.
    Hayden, P.
    Das Sarma, S.
    Gervais, G.
    Pfeiffer, L. N.
    West, K. W.
    PHYSICAL REVIEW LETTERS, 2008, 100 (14)
  • [4] Impact of Disorder on the 5/2 Fractional Quantum Hall State
    Pan, W.
    Masuhara, N.
    Sullivan, N. S.
    Baldwin, K. W.
    West, K. W.
    Pfeiffer, L. N.
    Tsui, D. C.
    PHYSICAL REVIEW LETTERS, 2011, 106 (20)
  • [5] Local charge of the ν = 5/2 fractional quantum Hall state
    Vivek Venkatachalam
    Amir Yacoby
    Loren Pfeiffer
    Ken West
    Nature, 2011, 469 : 185 - 188
  • [6] Quantum computation with quasiparticles of the fractional quantum Hall effect
    Averin, DV
    Goldman, VJ
    SOLID STATE COMMUNICATIONS, 2002, 121 (01) : 25 - 28
  • [7] Quantum computation with quasiparticles of the fractional quantum Hall effect
    Averin, D.V.
    Goldman, V.J.
    Solid State Communications, 2001, 121 (01) : 25 - 28
  • [8] Landau level mixing in the ν=5/2 fractional quantum Hall state
    Wojs, Arkadiusz
    Quinn, John J.
    PHYSICAL REVIEW B, 2006, 74 (23):
  • [9] Local charge of the v = 5/2 fractional quantum Hall state
    Venkatachalam, Vivek
    Yacoby, Amir
    Pfeiffer, Loren
    West, Ken
    NATURE, 2011, 469 (7329) : 185 - 188
  • [10] ν=5/2 Fractional Quantum Hall State in the Presence of Alloy Disorder
    Deng, Nianpei
    Gardner, G. C.
    Mondal, S.
    Kleinbaum, E.
    Manfra, M. J.
    Csathy, G. A.
    PHYSICAL REVIEW LETTERS, 2014, 112 (11)