A microfluidic device for 2D to 3D and 3D to 3D cell navigation

被引:5
|
作者
Shamloo, Amir [1 ]
Amirifar, Leyla [1 ]
机构
[1] Sharif Univ Technol, Dept Mech Engn, Tehran, Iran
关键词
microfluidic device; cell chemotaxis; concentration gradient; matrix density; ENDOTHELIAL-CELLS; STEM-CELLS; GROWTH; CHEMOTAXIS; GRADIENTS; GUIDANCE; CULTURE;
D O I
10.1088/0960-1317/26/1/015003
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Simulations of 3D silicon radiation detector structures in 2D and 3D
    Kalliopuska, Juha
    Eranen, Simo
    Orava, Risto
    2005 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2005, : 803 - 807
  • [22] 3D versus 2D/3D shape descriptors:: A comparative study
    Zaharia, T
    Prêteux, F
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS III, 2004, 5298 : 47 - 58
  • [23] A "LEARN 2D, APPLY 3D" METHOD FOR 3D DECONVOLUTION MICROSCOPY
    Soulez, Ferreol
    2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, : 1075 - 1078
  • [24] Adjusting to 3D Devices in a 2D Device World
    Harris, H. R.
    Adhikari, H.
    Smith, C. E.
    Smith, G.
    Yang, J. -W.
    Majhi, P.
    Jammy, R.
    2008 IEEE INTERNATIONAL SOI CONFERENCE, PROCEEDINGS, 2008, : 115 - +
  • [25] Printing 3D microfluidic chips with a 3D sugar printer
    Yong He
    Jingjiang Qiu
    Jianzhong Fu
    Jiong Zhang
    Yina Ren
    An Liu
    Microfluidics and Nanofluidics, 2015, 19 : 447 - 456
  • [26] Printing 3D microfluidic chips with a 3D sugar printer
    He, Yong
    Qiu, Jingjiang
    Fu, Jianzhong
    Zhang, Jiong
    Ren, Yina
    Liu, An
    MICROFLUIDICS AND NANOFLUIDICS, 2015, 19 (02) : 447 - 456
  • [28] Design in 2D, model in 3D: Live 3D pose generation from 2D sketches
    Tosco, Paolo
    Mackey, Mark
    Cheeseright, Tim
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [29] Orientation Control of 2D Perovskite in 2D/3D Heterostructure by Templated Growth on 3D Perovskite
    Uzurano, Genya
    Kuwahara, Nao
    Saito, Tomoki
    Fujii, Akihiko
    Ozaki, Masanori
    ACS MATERIALS LETTERS, 2022, 4 (02): : 378 - 384
  • [30] Elastomeric microfluidic reactors for use with 2D and 3D surfaces
    Konda, Abhiteja
    Stoller, Michael
    Morin, Stephen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249