Edge-pancyclicity of coupled graphs

被引:8
|
作者
Lih, KW
Song, ZM
Wang, WF
Zhang, KM
机构
[1] Acad Sinica, Inst Math, Taipei 11529, Taiwan
[2] SE Univ, Dept Appl Math, Nanjing 210096, Peoples R China
[3] Liaoning Univ, Dept Math, Shenyang 110036, Peoples R China
[4] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
coupled graph; edge-panciclicity; ear decomposition;
D O I
10.1016/S0166-218X(01)00307-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The coupled graph c(G) of a plane graph G is the graph defined on the vertex set V(G)boolean ORF(G) so that two vertices in c(G) are joined by an edge if and only if they are adjacent or incident in G. We prove that the coupled graph of a 2-connected plane graph is edge-pancyclic. However, there exists a 2-edge-connected plane graph G such that c(G) is not Hamiltonian. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:259 / 264
页数:6
相关论文
共 50 条
  • [41] Rainbow vertex pair-pancyclicity of strongly edge-colored graphs
    Zhao, Peixue
    Huang, Fei
    arXiv, 2022,
  • [42] PANCYCLICITY OF HAMILTONIAN LINE GRAPHS
    VANBLANKEN, E
    VANDENHEUVEL, J
    VELDMAN, HJ
    DISCRETE MATHEMATICS, 1995, 138 (1-3) : 379 - 385
  • [43] Pancyclicity of connected circulant graphs
    Bogdanowicz, ZR
    JOURNAL OF GRAPH THEORY, 1996, 22 (02) : 167 - 174
  • [44] Pancyclicity of recursive circulant graphs
    Araki, T
    Shibata, Y
    INFORMATION PROCESSING LETTERS, 2002, 84 (03) : 173 - 173
  • [45] Pancyclicity of recursive circulant graphs
    Araki, T
    Shibata, Y
    INFORMATION PROCESSING LETTERS, 2002, 81 (04) : 187 - 190
  • [46] Pancyclicity of strong products of graphs
    Král, D
    Maxová, J
    Podbrdsky, P
    Sámal, R
    GRAPHS AND COMBINATORICS, 2004, 20 (01) : 91 - 104
  • [47] Notes on vertex pancyclicity of graphs
    Guo, Qiaoping
    Li, Shengjia
    Xu, Gaokui
    Guo, Yubao
    INFORMATION PROCESSING LETTERS, 2013, 113 (19-21) : 710 - 713
  • [48] Pancyclicity of Strong Products of Graphs
    Daniel Král
    Jana Maxová
    Pavel Podbrdský
    Robert Šámal
    Graphs and Combinatorics, 2004, 20 : 91 - 104
  • [49] Edge-fault-tolerant pancyclicity and bipancyclicity of Cartesian product graphs with faulty edges
    Cheng, Chia-Wen
    Hsieh, Sun-Yuan
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2016, 82 (05) : 767 - 781
  • [50] An Implicit Degree Condition for Pancyclicity of Graphs
    Hao Li
    Junqing Cai
    Wantao Ning
    Graphs and Combinatorics, 2013, 29 : 1459 - 1469