The origin and evolution of fragrance in rice (Oryza sativa L.)

被引:249
|
作者
Kovach, Michael J. [1 ]
Calingacion, Mariafe N. [2 ]
Fitzgerald, Melissa A. [2 ]
McCouch, Susan R. [1 ]
机构
[1] Cornell Univ, Dept Genet & Plant Breeding, Ithaca, NY 14853 USA
[2] Int Rice Res Inst, Grain Qual Nutr & Postharvest Ctr, Los Banos, Philippines
基金
美国国家科学基金会;
关键词
BADH2; Basmati; Jasmine; GENETIC-ANALYSIS; CULTIVATED RICE; AROMA; 2-ACETYL-1-PYRROLINE; DIVERSITY; DEHYDROGENASE; TOLERANCE; COMPONENT; FLOW;
D O I
10.1073/pnas.0904077106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fragrance in the grain is one of the most highly valued grain quality traits in rice, yet the origin and evolution of the betaine aldehyde dehydrogenase gene (BADH2) underlying this trait remains unclear. In this study, we identify eight putatively nonfunctional alleles of the BADH2 gene and show that these alleles have distinct geographic and genetic origins. Despite multiple origins of the fragrance trait, a single allele, badh2.1, is the predominant allele in virtually all fragrant rice varieties today, including the widely recognized Basmati and Jasmine types. Haplotype analysis allowed us to establish a single origin of the badh2.1 allele within the Japonica varietal group and demonstrate the introgression of this allele from Japonica to Indica. Basmati-like accessions were nearly identical to the ancestral Japonica haplotype across a 5.3-Mb region flanking BADH2 regardless of their fragrance phenotype, demonstrating a close evolutionary relationship between Basmati varieties and the Japonica gene pool. These results clarify the relationships among fragrant rice varieties and challenge the traditional assumption that the fragrance trait arose in the Indica varietal group.
引用
收藏
页码:14444 / 14449
页数:6
相关论文
共 50 条
  • [31] The performance of allelopathic heterosis in rice (Oryza sativa L.)
    Lin, WX
    He, HQ
    Kim, KU
    Liang, KJ
    Guo, YC
    Liang, YY
    Chene, FY
    ALLELOPATHY JOURNAL, 2003, 12 (02): : 179 - 188
  • [32] Transformation of Rice (Oryza sativa L.) by Agrobacterium tumefaciens
    Li, Y.
    Shen, D.-L.
    Pan, X.-Z. et al.
    Chinese Science Bulletin, 1994, 39 (17):
  • [33] Direct organogenesis of rice (Oryza sativa L.) mesocoptiles
    Rey, Maristela dos Santos
    de Pinho, Daiane Schmidt
    Vieira, Anieb Prestes
    Bolacel Braga, Eugenia Jacira
    Pierobom, Carlos Roberto
    Peters, Jose Antonio
    ACTA SCIENTIARUM-AGRONOMY, 2010, 32 (03): : 521 - 526
  • [34] Investigation of tocotrienol biosynthesis in rice (Oryza sativa L.)
    Matsuzuka, Kentaro
    Kimura, Eiichi
    Nakagawa, Kiyotaka
    Murata, Kazumasa
    Kimura, Toshiyuki
    Miyazawa, Teruo
    FOOD CHEMISTRY, 2013, 140 (1-2) : 91 - 98
  • [35] Mechanism of anther dehiscence in rice (Oryza sativa L.)
    Matsui, T
    Omasa, K
    Horie, T
    ANNALS OF BOTANY, 1999, 84 (04) : 501 - 506
  • [36] Salinity resistance studies in rice (Oryza sativa L.)
    Bhatt, M. M.
    Patel, Dilip B.
    Sasidharan, N.
    Jadeja, G. C.
    RESEARCH ON CROPS, 2008, 9 (02) : 215 - 218
  • [37] Lodging Resistance of Stems in Rice(Oryza sativa L.)
    Jinxian ZHANG
    Guan RUAN
    Shejian LIANG
    Plant Diseases and Pests, 2012, (02) : 1 - 5
  • [38] Whole genome sequencing of Oryza sativa L. cv. Seeragasamba identifies a new fragrance allele in rice
    Bindusree, Ganigara
    Natarajan, Purushothaman
    Kalva, Sukesh
    Madasamy, Parani
    PLOS ONE, 2017, 12 (11):
  • [39] The Process of Methylmercury Accumulation in Rice (Oryza sativa L.)
    Meng, Bo
    Feng, Xinbin
    Qiu, Guangle
    Liang, Peng
    Li, Ping
    Chen, Chunxiao
    Shang, Lihai
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (07) : 2711 - 2717
  • [40] The extent of linkage disequilibrium in rice (Oryza sativa L.)
    Mather, Kristie A.
    Caicedo, Ana L.
    Polato, Nicholas R.
    Olsen, Kenneth M.
    McCouch, Susan
    Purugganan, Michael D.
    GENETICS, 2007, 177 (04) : 2223 - 2232